алгебраическая форма комплексного числа это

Комплексные числа

dot5Алгебраическая форма записи комплексных чисел
dot5Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
dot5Комплексно сопряженные числа
dot5Модуль комплексного числа
dot5Деление комплексных чисел, записанных в алгебраической форме
dot5Изображение комплексных чисел радиус-векторами на координатной плоскости
dot5Аргумент комплексного числа
dot5Тригонометрическая форма записи комплексного числа
dot5Формула Эйлера. Экспоненциальная форма записи комплексного числа
dot5Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
dot5Извлечение корня натуральной степени из комплексного числа

div1

Алгебраическая форма записи комплексных чисел

Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

Комплексно сопряженные числа

dot5 comp14
dot5 comp15
dot5 comp16
dot5 comp17
dot5 comp18

Модуль комплексного числа

Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле

comp19

Для произвольного комплексного числа z справедливо равенство:

comp20

а для произвольных комплексных чисел z1 и z2 справедливы неравенства:

dot5 comp21
dot5 comp22
dot5 comp23
dot5 comp24

Деление комплексных чисел, записанных в алгебраической форме

Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле

comp25

comp25w600

comp25w300

Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

comp26

Деление на нуль запрещено.

Изображение комплексных чисел радиус-векторами координатной плоскости

Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

c1

При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Аргумент комплексного числа

c2

Считается, что комплексное число нуль аргумента не имеет.

comp28

Тогда оказывается справедливым равенство:

comp29

comp31 (3)
comp32 (4)

а аргумент определяется в соответствии со следующей Таблицей 1.

Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.

Таблица 1. – Формулы для определения аргумента числа z = x + i y

y z

Расположение
числа z
Знаки x и y Главное значение аргумента Аргумент Примеры
Положительная
вещественная
полуось
comp36 comp37 comp38
Положительная
мнимая
полуось
ms4 comp41 comp42
Второй
квадрант
comp44 comp45 comp46
Отрицательная
вещественная
полуось
Положительная
вещественная
полуось
Знаки x и y
Главное
значение
аргумента
0
Аргумент φ = 2kπ
Примеры comp34
Главное
значение
аргумента comp36 Аргумент comp37 Примеры comp38 Главное
значение
аргумента ms4 Аргумент comp41 Примеры comp42 Главное
значение
аргумента comp44 Аргумент comp45 Примеры comp46

x z Третий
квадрант Знаки x и y

x z Отрицательная
мнимая
полуось Знаки x и y

y z Четвёртый
квадрант Знаки x и y

Положительная вещественная полуось

Главное значение аргумента:

comp34

Расположение числа z :

Главное значение аргумента:

comp36

comp37

comp38

Расположение числа z :

Положительная мнимая полуось

Главное значение аргумента:

ms4

comp41

comp42

Расположение числа z :

Главное значение аргумента:

comp44

comp45

comp46

Расположение числа z :

Отрицательная вещественная полуось

Отрицательная мнимая полуось

x z = x + i y может быть записано в виде

Формула Эйлера. Экспоненциальная форма записи комплексного числа

В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :

Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде

Из формулы (7) вытекают, в частности, следующие равенства:

comp65

comp65w400

а из формул (4) и (6) следует, что модуль комплексного числа

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме

Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.

Действительно, умножение и деление двух произвольных комплексных чисел comp68и comp69записанных в экспоненциальной форме, осуществляется по формулам

comp70

comp70w300

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.

Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле

comp71

Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Извлечение корня натуральной степени из комплексного числа

Пусть comp72— произвольное комплексное число, отличное от нуля.

Для того, чтобы решить уравнение (8), перепишем его в виде

comp75

comp76

следствием которых являются равенства

comp77 (9)

Из формул (9) вытекает, что уравнение (8) имеет n различных корней

comp78 (10)

comp79

comp79w300

comp84

то по формуле (10) получаем:

comp85

comp86

comp86w300

Источник

Алгебраическая форма комплексного числа это

VII .1. Формы записи комплексных чисел и действия над ними

где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы

Понятия «больше» и «меньше» для комплексных чисел не вводятся.

Числа z = x + iy и 2 называются комплексно сопряженными.

3

Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.

Модуль r и аргумент φ можно рассматривать как полярные координаты вектора 8 , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотно­шений сторон в прямоугольном треугольнике получа­ем

Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле

Аргумент определяется из формул:

Используя формулу Эйлера

комплексное число 15 можно записать в так назы­ваемой показательной (или экспоненциальной) форме

где r =| z | — модуль комплексного числа, а угол 16 ( k =0;1;1;2;2…).

Пример 7.1. Записать комплексные числа 100 в тригонометрической и показательной формах.

104

На множестве комплексны х чисел определен ряд операций.

21

Из (7.11) следует важнейшее соотношение i 2 = 1. Действительно,

Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:

(7.13) называется первой формулой Муавра.

Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби 39 на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = 1 и формулы разности квадратов.

Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:

Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.

Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

Пользуясь формулой (7.11), вычислим их произведение

На основании формулы (7.14) вычислим их частное

46

Решение. Используя (7.4) и (7.5), получаем:

Аналогично, для z 2 можно записать:

По формулам (7.12) и (7.16) получим в тригонометрической форме:

52

Пользуясь формулами (7.14) и (7.17), получим в показательной форме:

53

в натуральную степень, определенному ранее формулой (7.13).

(7.18) называется второй формулой Муавра.

Пример 7.4. Найти все корни уравнения z 4 +16=0.

71

Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами

Приведем еще одну теорему, имеющую место над множеством комплексных чисел.

67

Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.

Источник

Понравилась статья? Поделить с друзьями:
Добавить комментарий
  • Как сделать успешный бизнес на ритуальных услугах
  • Выездной кейтеринг в России
  • Риски бизнеса: без чего не обойтись на пути к успеху
  • алгебраическая форма комплексного числа калькулятор
  • алгебраическая форма комплексного числа изображенного на рисунке