Содержание
- Основные режимы работы электродвигателей
- Дополнительные режимы работы электродвигателей
Режимы работы электродвигателей – это определенный порядок чередования периодов, который характеризуется:
- продолжительностью и величиной нагрузки;
- условиями охлаждения;
- частотой пуска и отключений;
- частотой реверса;
- соотношениями потерь в периоды установившегося движения и пуска.
Так как существует множество режимов, выпуск двигателей для каждого из них нецелесообразен, поэтому серийные двигатели проектируются согласно ГОСТ для работы в восьми номинальных режимах. Номинальные данные содержатся в паспорте электродвигателя. Оптимальное функционирование агрегата гарантируется при его эксплуатации при номинальной нагрузке и в номинальном режиме.
Основные режимы работы электродвигателей
Существуют три основных (продолжительный, кратковременный, повторно-кратковременный) и пять дополнительных режимов работы, условно маркированных согласно международной классификации S1-S8. Отечественные электромашиностроительные заводы в обязательном порядке включают номинальные данные на основные режимы в каталоги и паспорт агрегата.
Продолжительный режим (S1) предусматривает длительный и беспрерывный рабочий период, во время которого двигатель нагревается до установившейся температуры. Он может «подразделяться» на два вида:
- Режим с постоянной нагрузкой (без изменения температуры в период работы). В нем функционируют двигатели конвейеров, электроприводы вентиляторов и насосов.
- Режим с изменяющейся нагрузкой (температура поднимается или падает с изменением нагрузки). Он используется при работе металлорежущих, деревообрабатывающих и прокатных станков.
Кратковременный режим работы электродвигателя (S2) характеризуется непродолжительным рабочим периодом (по стандартам 10, 30, 60, 90 минут) без нагрева двигателя до установившейся температуры с последующим его охлаждением во время паузы до температуры окружающей среды. В этом режиме действуют электроприводы запорных устройств (вентилей, шлюзов, заслонок и т.д.). В паспорте двигателя указывается продолжительность рабочего периода (например, S2 – 60 мин.).
Повторно-кратковременный режим работы электродвигателя (S3) – режим, при котором в течение рабочего периода нагрев двигателя не достигает установившейся температуры, а во время паузы не происходит охлаждения до температуры окружающей среды. Он характеризуется непрерывным чередованием периодов работы под нагрузкой и вхолостую. Так функционируют электроприводы подъемных кранов, экскаваторов и лифтов, то есть устройств, действующих циклично.
Дополнительные режимы работы электродвигателей
Дополнительные режимы обозначены маркерами S4-S8. Они введены для более удобного эквивалентирования произвольных режимов и расширения номенклатуры номинальных режимов.
S4 – повторно-кратковременный режим с влиянием пусковых процессов. Каждый цикл работы включает в себя:
- длительный период пуска, в течение которого пусковые потери оказывают влияние на температуру узлов агрегата;
- период функционирования при постоянной нагрузке без нагрева до устоявшейся температуры;
- паузу, во время которой не предусмотрено охлаждение двигателя до температуры окружающей среды.
S5 – повторно-кратковременный режим с электрическим торможением. В цикл работы входят:
- долгое время пуска;
- время работы при постоянной нагрузке без нагрева до устоявшейся температуры;
- период быстрого электрического торможения;
- период работы вхолостую без охлаждения до температуры окружающей среды.
S6 – перемежающийся режим работы. Цикл работы состоит из:
- периода функционирования с постоянной нагрузкой;
- паузы.
В течение обоих периодов температура двигателя не достигает установившегося значения.
S7 – перемежающийся режим с электрическим торможением и влиянием пусковых процессов. В каждый цикл включены:
- длительный период пуска;
- время действия машины с постоянной нагрузкой;
- быстрое электрическое торможение.
Паузы данным режимом не предусмотрены.
S8 – перемежающийся режим с разными частотами вращения (2 или более). В цикл входят периоды:
- работы с неизменной частотой вращения и постоянной нагрузкой;
- работы при других неизменных нагрузках, причем каждой из них соответствует определенная частота вращения.
Как и предыдущий, этот режим не содержит пауз.
Если вы знаете характеристики работы электродвигателей, вам не составит труда выбрать агрегат, оптимально подходящий для ваших целей. Указанная в каталогах мощность двигателя предусматривает его эксплуатацию в нормальных условиях в режиме S1 (если это не двигатель с повышенным скольжением). Превышение мощности при режиме S2 допустимо не более чем на 50% в течение 10 минут, 25% в течение 30 минут и 10% в течение 90 минут.
Режимы работы двигателя
При эксплуатации автомобиля постоянно меняется режим работы двигателя. При этом под режимом работы двигателя понимается частота вращения коленчатого вала и развиваемая им мощность, т. е. тяговое усилие. Мощность двигателя, которая расходуется на преодоление сопротивлений, возникающих при движении автомобиля (сопротивление дорожного покрытия, воздуха, подъема или спуска, массы перевозимого груза и т. д.) называется нагрузкой.
Если, например, двигатель при частоте вращения коленчатого вала 3200 об/мин в данных дорожных условиях развивает мощность 40 кВт, то нагрузка двигателя составляет 40 кВт.
Если максимально возможная мощность двигателя при этой частоте вращения коленчатого вала равна 80 кВт, то нагрузочный режим в данном конкретном случае соответствует 50 %, т. е. двигатель работает в половину своей силы. Мощность двигателя завит от положения дроссельной заслонки: по мере ее открытия мощность повышается, и наоборот.
Когда автомобиль стоит или движется по инерции (что с точки зрения науки Статики – одно и то же), двигатель работает на холостом ходу и развиваемая им мощность должна покрывать только внутренние потери.
На хороших дорогах и если автомобиль не полностью загружен, двигатель работает на средних нагрузках. При движении полностью загруженного автомобиля по плохим дорогам, на крутых подъемах двигатель развивает максимальную мощность.
Если водитель решил резко повысить скорость движения автомобиля в зависимости от условий движения, мощность двигателя должна быстро нарастать.
Особые условия работы двигателя имеют место и при его запуске после длительной стоянки автомобиля, т. е. когда двигатель холодный.
Исходя из перечисленных выше возможных режимов работы двигателя, можно выделить следующие условия, в которых ему приходится выполнять свои функции, и которые следует учитывать, разрабатывая конструкцию системы питания:
- работа в режиме отсутствия нагрузки (холостой ход);
- работа в режиме планируемых оптимальных нагрузок (средние нагрузки);
- работа в условиях длительных повышенных нагрузок (максимальные нагрузки);
- работа в условиях кратковременных экстремальных нагрузок (разгон, ускорение);
- пуск холодного двигателя.
Для каждого из перечисленных режимов мощность двигателя различна, значит, система питания автомобиля должна гибко подстраиваться под сиюминутные требования, диктуемые внешними нагрузочными условиями (масса груза, состояние и профиль дороги и т. п.), намерениями водителя и другими обстоятельствами (например, пуск холодного двигателя).
Разумеется, нельзя все проблемы взваливать только на систему питания. Некоторую «ответственность» несет и трансмиссия автомобиля, например, коробка перемены передач, но, поскольку мы сейчас рассматриваем систему питания, то нас интересует, каким образом она должна реагировать на характер эксплуатации автомобиля и двигателя в тех или иных условиях.
Решение основных сиюминутных задач и выполнение насущных требований к системе питания обеспечивается регулированием качественных и количественных характеристик горючей смеси, поступающей в цилиндры двигателя. Количественные характеристики можно корректировать с помощью дроссельной заслонки (или педали акселератора), а вот качественный состав горючей смеси должен обеспечивать карбюратор. При этом должны учитываться следующие требования:
- пуск холодного двигателя требует очень богатой смеси (0,80 ≤ α ≥ 0,60), поскольку ухудшаются условия распыления и испарения топлива из-за малых скоростей движения горючей смеси и увеличения содержания в рабочей смеси остаточных газов, так как дроссельная заслонка прикрыта;
- на холостом ходу в цилиндры двигателя следует подавать небольшое количество горючей смеси, но она должна быть слегка обогащенной, чтобы работа двигателя была устойчивой;
- режим частичных (средних) нагрузок, являющийся основным (оптимальным) режимом работы двигателя характеризуется обедненной рабочей смесью, поскольку в этом режиме двигатель функционирует основную часть времени, и главное требование к данному режиму – максимальная экономия топлива (1,50 ≤ α ≥ 1,15);
- режим полных (максимальных) нагрузок требует обогащения состава смеси (0,85 ≤ α ≥ 0,90);
- режим ускорения (экстремальный режим – резкое увеличение мощности двигателя, например, при обгоне), требует значительного обогащения горючей смеси.
Простейший карбюратор, конструкция которого рассмотрена в этой статье, не способен обеспечить требуемый качественный состав горючей смеси, необходимый для работы двигателя в перечисленных режимах нагрузки.
Поэтому в конструкциях реальных современных карбюраторов предусмотрены специальные устройства, обеспечивающие корректировку состава горючей смеси в зависимости от постоянно изменяющихся потребностей автомобильного двигателя на различных режимах:
- корректирующие устройства главных дозирующих систем;
- приспособления для облегчения пуска двигателя;
- системы холостого хода;
- экономайзеры (обогатители);
- ускорительные насосы (ускорители).
С особенностями работы и принципом действия этих дополнительных устройств, расширяющих круг возможностей простейшего карбюратора, можно ознакомиться в следующих статьях.
***
Главная дозирующая система и компенсационное устройство
Двигатель выбирают,
исходя из условий работы, на основе
нагрузочной диаграммы, под которой
понимают графически выраженную
зависимость мощности Р, момента М или
тока I
от времени t:
Когда автомобиль стоит или движется по инерции (что с точки зрения науки Статики – одно и то же), двигатель работает на холостом ходу и развиваемая им мощность должна покрывать только внутренние потери.
На хороших дорогах и если автомобиль не полностью загружен, двигатель работает на средних нагрузках. При движении полностью загруженного автомобиля по плохим дорогам, на крутых подъемах двигатель развивает максимальную мощность.
Если водитель решил резко повысить скорость движения автомобиля в зависимости от условий движения, мощность двигателя должна быстро нарастать.
Особые условия работы двигателя имеют место и при его запуске после длительной стоянки автомобиля, т. е. когда двигатель холодный.
Исходя из перечисленных выше возможных режимов работы двигателя, можно выделить следующие условия, в которых ему приходится выполнять свои функции, и которые следует учитывать, разрабатывая конструкцию системы питания:
- работа в режиме отсутствия нагрузки (холостой ход);
- работа в режиме планируемых оптимальных нагрузок (средние нагрузки);
- работа в условиях длительных повышенных нагрузок (максимальные нагрузки);
- работа в условиях кратковременных экстремальных нагрузок (разгон, ускорение);
- пуск холодного двигателя.
Для каждого из перечисленных режимов мощность двигателя различна, значит, система питания автомобиля должна гибко подстраиваться под сиюминутные требования, диктуемые внешними нагрузочными условиями (масса груза, состояние и профиль дороги и т. п.), намерениями водителя и другими обстоятельствами (например, пуск холодного двигателя).
Разумеется, нельзя все проблемы взваливать только на систему питания. Некоторую «ответственность» несет и трансмиссия автомобиля, например, коробка перемены передач, но, поскольку мы сейчас рассматриваем систему питания, то нас интересует, каким образом она должна реагировать на характер эксплуатации автомобиля и двигателя в тех или иных условиях.
Решение основных сиюминутных задач и выполнение насущных требований к системе питания обеспечивается регулированием качественных и количественных характеристик горючей смеси, поступающей в цилиндры двигателя. Количественные характеристики можно корректировать с помощью дроссельной заслонки (или педали акселератора), а вот качественный состав горючей смеси должен обеспечивать карбюратор. При этом должны учитываться следующие требования:
- пуск холодного двигателя требует очень богатой смеси (0,80 ≤ α ≥ 0,60), поскольку ухудшаются условия распыления и испарения топлива из-за малых скоростей движения горючей смеси и увеличения содержания в рабочей смеси остаточных газов, так как дроссельная заслонка прикрыта;
- на холостом ходу в цилиндры двигателя следует подавать небольшое количество горючей смеси, но она должна быть слегка обогащенной, чтобы работа двигателя была устойчивой;
- режим частичных (средних) нагрузок, являющийся основным (оптимальным) режимом работы двигателя характеризуется обедненной рабочей смесью, поскольку в этом режиме двигатель функционирует основную часть времени, и главное требование к данному режиму – максимальная экономия топлива (1,50 ≤ α ≥ 1,15);
- режим полных (максимальных) нагрузок требует обогащения состава смеси (0,85 ≤ α ≥ 0,90);
- режим ускорения (экстремальный режим – резкое увеличение мощности двигателя, например, при обгоне), требует значительного обогащения горючей смеси.
Простейший карбюратор, конструкция которого рассмотрена в этой статье, не способен обеспечить требуемый качественный состав горючей смеси, необходимый для работы двигателя в перечисленных режимах нагрузки.
Поэтому в конструкциях реальных современных карбюраторов предусмотрены специальные устройства, обеспечивающие корректировку состава горючей смеси в зависимости от постоянно изменяющихся потребностей автомобильного двигателя на различных режимах:
- корректирующие устройства главных дозирующих систем;
- приспособления для облегчения пуска двигателя;
- системы холостого хода;
- экономайзеры (обогатители);
- ускорительные насосы (ускорители).
С особенностями работы и принципом действия этих дополнительных устройств, расширяющих круг возможностей простейшего карбюратора, можно ознакомиться в следующих статьях.
***
Главная дозирующая система и компенсационное устройство
Двигатель выбирают,
исходя из условий работы, на основе
нагрузочной диаграммы, под которой
понимают графически выраженную
зависимость мощности Р, момента М или
тока I
от времени t:
,
,.
Различают три
основные режима работы, длительный,
кратковременный и повторно- кратковременный.
6.1 Длительный режим.
Это режим, при
котором двигатель работает под нагрузкой
в течение времени, достаточного для
нагрева его до установившейся температуры
(рис.1а). Установившаяся температура
определяется нагрузкой двигателя.
Двигатель используется полностью, если
установившаяся температура равна
максимально допустимой для класса
изоляции двигателя
.
В длительном режиме на судах работают
электроприводы вентиляторов, насосов
и других механизмов.
6.2 Кратковременный режим.
В этом режиме
двигатель, работая под нагрузкой не
успевает нагреться до установившейся
температуры, а в период остановки
остывает до температуры окружающей
среды (рис.1б). Работать двигатель всегда
начинает в холодном состоянии
.
В таком режиме на судах работают
электроприводы якорно-швартовых
устройств. Завод-изготовитель двигателей
указывает номинальные мощности двигателя
для стандартных длительностей работы
– 10, 30 и 60 мин.
6.3 Повторно-кратковременный режим.
Этот режим состоит
из периодов работы и пауз, причём за
время работы двигатель успевает нагреться
до установившейся температуры, а за
время паузы не успевает остыть до
температуры окружающей среды (рис.1в).
Суммарная продолжительность рабочего
периода
.
И паузы(время цикла)
не должна превышать 10 мин. Этот режим
характеризуется относительной
продолжительностью включения –
отношением продолжительности рабочего
периодак продолжительности,
выраженной в процентах:
Стандартные
значения ПВ – 15, 25 ,40 ,60%.
Повторно-кратковременный
режим характерен для грузоподъёмных
механизмов.
7. Нагрев и охлаждение электродвигателей
7.1 Нагрев двигателя.
Работая с некоторой
постоянной мощностью на валу
,
двигатель потребляет из сети мощность,
превышающую мощностьна значение потерь,
которые выражают через к.п.д. двигателя:
Потери мощности
в двигателе превращаются в теплоту,
вызывая нагрев до некоторой температуры,
определяемую его нагрузкой. Количество
теплоты
,
выделяемое в двигателе:
При расчёте тепловых
процессов принимают следующие допущения:
— двигатель
представляют в виде однородного твёрдого
тела, равномерно нагревающегося по
всему объёму;
— считают, что
двигатель охлаждается только благодаря
теплопроводности и конвекции.
При этих условиях
количество теплоты, выделяемой двигателем
в окружающую среду, пропорционально
повышению
его температурынад температурой окружающей среды.
Введём обозначения:
С – теплоёмкость двигателя – количество
теплоты, необходимое для нагревания
двигателя на 1oС,
;
А – теплоотдача двигателя – количество
теплоты, отдаваемое в окружающую среду
в течение 1с при разности температур
двигателя и среды 1oС,
oС.
Уравнение теплового баланса имеет вид
[1]:
,
где
— количество теплоты, выделяющейся в
двигателе за время dt;
— количество
теплоты, идущей на нагрев двигателя;
— количество
теплоты, отдаваемой двигателем в
окружающую среду за время dt.
Решив дифференциальное
уравнение относительно
,
можно определить температуру двигателя
в любой момент времени его работы (при
условии, что температура двигателя в
момент пуска равна температуре окружающей
среды).
[1]
где — постоянная времени нагрева,;
— установившееся
превышение температуры, которое будет
достигнуто за время
.
В реальных условиях черездвигатель достигает температуры.
Исходя из реальных
условий нагрева двигателя, постоянную
нагрева Т определяют как время, в течение
которого нагревается до
.
Действительно:
Для двигателей
малой и средней мощности постоянная
времени нагрева находится в пределах
10-20 мин.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Режимы работы двигателя
Карбюраторный двигатель имеет следующие режимы работы: пуск, холостой ход, средние нагрузки, полные нагрузки, резкий переход на полные нагрузки.
При пуске холодного двигателя необходима богатая горючая смесь (а от 0,3 до 0,6), так как частота вращения коленчатого вала мала, топливо плохо испаряется, а часть его конденсируется на холодных стенках цилиндра. Это приводит к тому, что в цилиндры двигателя попадает незначительное количество пусковых фракций, обеспечивающих гарантированный пуск двигателя.
Работа двигателя на холостом ходу и при малых нагрузках возможна при обогащенной смеси (а от 0,7 до 0,9). Горючая смесь поступает в цилиндры двигателя и смешивается со значительным количеством остаточных отработавших газов, поэтому обогащение смеси улучшает ее воспламеняемость и способствует устойчивой работе двигателя без нагрузки.
Средние нагрузки — наибольшая часть работы двигателя в процессе эксплуатации, поэтому на этом этапе необходима обедненная горючая смесь (а от 1,05 до 1,1), что способствует наилучшей экономичности двигателя.
Полная нагрузка обеспечивается подачей в цилиндры двигателя обогащенной смеси (а от 0,85 до 0,9). Этот режим необходим при разгоне автомобиля, движении автомобиля с максимальной скоростью, преодолении подъемов или тяжелых участков дороги.
При резком переходе на режим полной нагрузки (резкое открытие дроссельной заслонки) возможно обеднение горючей смеси — карбюратор должен иметь устройство, предотвращающее это.
Таким образом, в процессе работы двигателя карбюратор должен изменять состав горючей смеси в зависимости от режима работы двигателя.
Работа двигателя, подробнее
При определенных условиях работы двигателя потребности его в топливе могут в значительной мере отличаться от тех, что имеют место в условиях установившегося режима работы при нормальной рабочей температуре. Для этих условий необходимо производить корректировку процесса смесеобразования.
Режим пуска двигателя
При пуске двигателя осуществляется специальный расчет изменений по моменту зажигания, количеству поступающего воздуха и впрыскиваемого топлива. Увеличенное количество впрыскиваемого топлива, скорректированное на изменение температурного режима, способствует образованию пленки топлива на стенках впускного трубопровода и камеры сгорания, которое затем используется при переходе двигателя к нормальному послепусковому рабочему режиму. Момент зажигания также адаптируется к режиму пуска двигателя. Дроссельная заслонка на заряд воздуха при пуске двигателя не влияет, однако несколько приоткрывается перед входом двигателя в послепусковой режим работы.
Послепусковой режим
При этом режиме повышенное количество подаваемого воздушного заряда и впрыскиваемого топлива начинает снижаться в зависимости от температуры двигателя и времени, прошедшего с момента окончания режима пуска. Также к этому режиму адаптируется и момент зажигания.
Режим прогрева двигателя
После пуска двигателя при низкой температуре увеличение потребного крутящего момента, лимитируемого этой температурой, может быть достигнуто изменением количества заряда воздуха и впрыскиваемого топлива и корректировкой момента зажигания.
Нагрев каталитического нейтрализатора отработавших газов
При установке очень поздних углов опережения зажигания повышается температура отработавших газов, что позволяет быстро нагреть каталитический нейтрализатор до его рабочей температуры.
Режим холостого хода
При работе двигателя на холостом ходу создаваемый им крутящий момент должен быть достаточен лишь для поддержания его работы и функционирования вспомогательных систем. При использовании системы регулирования частоты вращения коленчатого вала на холостом ходу эта частота при всех условиях остается неизменной.
Работа при полной нагрузке
В режиме работы при полной нагрузке дроссельная заслонка полностью открыта (режим WOT), при этом потери на дросселирование отсутствуют. Двигатель вырабатывает максимальный крутящий момент для заданной частоты вращения коленчатого вала.
Режимы ускорения и замедления
При резких ускорениях и замедлениях происходят быстрые изменения давления во впускном трубопроводе двигателя. Следовательно, изменяются и условия образования пленки топлива на стенках впускного трубопровода. Для предотвращения обеднения смеси при ускорении режима работы двигателя необходима подача дополнительного топлива, что служит для образования на стенках топливной пленки. При замедлении, соответственно, количество впрыскиваемого топлива снижается.
Режим принудительного холостого хода (ПХХ) с отключением подачи топлива, повторный пуск
При переходе в режим принудительного холостого хода (ПХХ) с отключением подачи топлива, характеризуемого прекращением сгорания, система ME-Motronic обеспечивает плавное снижение крутящего момента двигателя, а также производит плавное включение подачи топлива при повторном пуске двигателя.
Другие статьи по рабочим процессам в двигателе
- Момент зажигания и регулировка его установки
- Детонация двигателя, датчик детонации
- Методы испытаний двигателей
- Фазы газораспределения
- Смесеобразование в бензиновых двигателях
- Выхлопные газы автомобилей
- Стенд с беговыми барабанами
Что нужно для правильного выбора электродвигателя? Его основные электрические характеристики – это:
- номинальное напряжение;
- номинальная мощность;
- скорость вращения вала.
Но двигатели могут работать по-разному. Самый легкий для электромотора режим работы описывается выражением «запустил и забыл». В момент запуска двигатель потребляет ток, в несколько раз больший номинального. Затем ток не изменяется во времени, механическая нагрузка на валу стабильна. При этом обмотки и магнитопроводы нагреваются до рабочей температуры, которая также остается постоянной.
Но двигатели приводят во вращение механизмы различного назначения. Некоторые из них требуют частых запусков и остановок, изменений направления вращения. Наглядный пример – работа электродвигателей в составе грузоподъемных механизмов: кранов, лебедок, тельферов. Оператор не даст отдохнуть электромотору, а будет манипулировать им столько, сколько потребуется для выполнения работы по перемещению груза. То же происходит с электродвигателями металлообрабатывающих станков: при установке детали, подгонке ее положения и в процессе обработки требуется неоднократные запуски и остановки станка и изменения направления вращения.
Нагрузка на валу также не всегда остается постоянной. В технологических процессах нередки случаи работы электродвигателей с резкопеременной загрузкой. Есть продукт – двигатель загружен, закончился – работает в холостую.
Все это приводит к изменению во времени электрических характеристик электродвигателей: тока и мощности. Но главное – изменяется характер нагрева обмоток и магнитопроводов. Потери на нагрев обмоток называются мощностью потерь в меди, а железа магнитопроводов – мощностью потерь в стали. Первые происходят за счет выделения тепла на активном сопротивлении обмотки, вторые – нагрева вихревыми токами, возникающими под действием магнитного поля. Для снижения потерь от вихревых токов магнитопроводы изготавливают из пакета тонких пластин. Их изолируют друг от друга, покрывая лаком. Но полностью избавиться от вихревых токов невозможно.
Так как при запуске двигатель потребляет повышенный ток, то и мощность, рассеиваемая в виде потерь в стали и меди, в момент пуска возрастает. Если после запуска мотор продолжает работу с постоянной нагрузкой, то пусковой нагрев не успевает оказать существенного влияния на его температуру. Если же запуски происходят постоянно, то установившаяся температура становится больше той, что была бы в случае продолжительной работы.
Перегрев электродвигателя снижает срок службы изоляции обмоток и стальных листов магнитопровода. При изготовлении ее рассчитывают на определенную температуру, а при ее превышении изоляция быстрее теряет свои характеристики.
Другим фактором, влияющим на срок службы электродвигателя, является механические воздействия на его детали. На проводник с током в магнитном поле действует сила, стремящаяся его переместить, сдвинуть с места. Прохождение пускового тока через обмотки приводит к увеличению на них механических нагрузок. Усилие передается на элементы, фиксирующие обмотки в пазах статора и ротора, расшатывает их.
Механические усилия испытывают и другие элементы конструкции электродвигателя: вал ротора, места крепления магнитопроводов, подшипники.
Почему нельзя учесть все эти факторы и изготавливать все электродвигатели способными им противостоять? Все дело в стоимости. Для ровной и продолжительной работы электродвигатель можно изготовить дешевле. А для эксплуатации в тяжелых условиях потребуются дополнительные усиления конструкции, изоляции, что вызовет удорожание двигателя в целом.
Поэтому, помимо основных электрических характеристик, электродвигателям устанавливают типовые режимы работы. Обозначаются они сокращениями от S1 до S10, и для каждого из них есть свое описание.
Рассмотрим основные особенности каждого из них.
Содержание
- S1 — продолжительный режим
- S2 — кратковременный режим
- S3 — повторно-кратковременный периодический режим
- S4 — режим S3 с пусками
- S5 — режим S3 с электрическим торможением
- S6 — непрерывный периодический режим с кратковременной нагрузкой
- S7 — режим S6 с электрическим торможением
- S8 — режим S6 с взаимозависимыми изменениями скорости вращения и нагрузки
- S9 — режим с непериодическими изменениями нагрузки и частоты вращения
- S10 — режим с дискретными постоянными нагрузками и скоростями вращения
S1 — продолжительный режим
Самый легкий и простой режим работы. Электродвигатель, будучи включенным, работает продолжительное время с неизменной нагрузкой. Он разогревается до рабочей температуры, после чего параметры работы не изменяются.
S2 — кратковременный режим
Электродвигатель включается на непродолжительное время и постоянную нагрузку. Времени работы недостаточно для того, чтобы был достигнут номинальный тепловой режим, а времени паузы после нее хватает, чтобы двигатель остыл практически до температуры окружающей среды.
В обозначение режима после S2 добавляется числовое значение продолжительности нагрузки в минутах.
S3 — повторно-кратковременный периодический режим
Последовательность режимов S2, повторяющихся с определенной частотой. При этом двигатель работает с неизменной нагрузкой, время покоя сменяется временем работы. То пуска не влияет на установившуюся температуру.
После обозначения S3 в маркировке указывается коэффициент циклической продолжительности включения (К=∆tр/Т) в процентах.
S4 — режим S3 с пусками
В этом режиме продолжительность работы становится соизмеримой с продолжительностью пуска. В результате цикл работы выглядит так: «пуск-работа-остановка». Он циклически повторяется.
Параметрами режима являются:
- коэффициент К=∆tр/Т;
- момент инерции двигателя (Jд), в кг∙м2
- момент инерции нагрузки (Jн), в кг∙м2
Их значения указываются после знака S4.
S5 — режим S3 с электрическим торможением
По сравнению с предыдущим в цикл работы добавляется электрическое торможение, физический смысл которого – преобразование механической энергии вращения вала двигателя обратно в электрическую. При этом происходит отбор энергии от вала, и он быстрее останавливается.
Виды электрического торможения:
- реверсивное (запуск вращающегося электродвигателя в обратную сторону);
- реостатное (отключенная от сети обмотка статора подключается к тормозным резисторам);
- рекуперативное (энергия вращающегося мотора заряжает аккумуляторы или отдается в сеть);
- динамическое (отключенная от сети переменного тока отмотка статора подключается к источнику постоянного тока);
- комбинации способов между собой.
После обозначения S5 указываются параметры, аналогичные режиму S4.
S6 — непрерывный периодический режим с кратковременной нагрузкой
Электродвигатель постоянно вращается, но циклически чередуется холостой ход и работа под нагрузкой.
Режим характеризуется коэффициентом К=∆tр/Т.
S7 — режим S6 с электрическим торможением
К режиму S6 добавляется торможение. Параметры те же, что и у S4.
S8 — режим S6 с взаимозависимыми изменениями скорости вращения и нагрузки
Как видно из названия, в этом режиме циклически изменяются нагрузка двигателя и частота его вращения. Причем эти два параметра связаны между собой. Измерение частоты вращения производится, например, путем изменения числа пар полюсов для асинхронных электродвигателей с короткозамкнутым ротором.
Параметры режима аналогичны S4, но приводятся для всех возможных частот вращения вала двигателя.
S9 — режим с непериодическими изменениями нагрузки и частоты вращения
Угловая скорость и нагрузка изменяются произвольным образом, при этом возможна работа с перегрузкой, превышающей базовую нагрузку.
S10 — режим с дискретными постоянными нагрузками и скоростями вращения
Режим характеризуется наличием большого числа дискретных постоянных нагрузок. Им соответствуют определенные частоты вращения вала двигателя.