Какие бывают режимы работы трансформаторов

Cкачать: Режимы работы трансформатора. Виды трансформаторов.
article placeholder



Скачать материал

Режимы работы трансформатора. Виды трансформаторов. ТЕМА ЗАН...



Скачать материал

090a 00044ec9 238b148e 090a 00044ec9 238b148e

10a7 0001d1de d4377404 10a7 0001d1de d4377404

  • Сейчас обучается 269 человек из 63 регионов

0a8a 0003c791 f3ca5d16 0a8a 0003c791 f3ca5d16

  • Сейчас обучается 412 человек из 62 регионов

00de 001019f5 96161ec9 00de 001019f5 96161ec9

Описание презентации по отдельным слайдам:

  • Режимы работы трансформатора. Виды трансформаторов. ТЕМА ЗАН...

    1 слайд

    Режимы работы трансформатора.
    Виды трансформаторов.
    ТЕМА ЗАНЯТИЯ
    Раздел презентации «Виды трансформаторов» подготовлен студентами 2 курса.
    Специальность:
    13.02.11 Техническая эксплуатация и обслуживание электрического и
    электромеханического оборудования (по отраслям). Группа ГЭМ-17
    Преподаватель:
    Скворцов Александр Михайлович
    Заслуженный учитель Р.Ф.
    ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ
    образовательное УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И ЩАДОВА»
    (ЧГТК ИМ. М.И. ЩАДОВА)

  • Различают несколько режимов работы трансформатора:Выделим три режима работыРа...

    2 слайд

    Различают несколько режимов работы трансформатора:
    Выделим три режима работы
    Рабочий режим
    Режим холостого хода
    Режим короткого замыкания

  • Рабочий режим — это работа трансформатора при подключенных потребителях или п...

    3 слайд

    Рабочий режим — это работа трансформатора при подключенных потребителях или под нагрузкой (под нагрузкой понимается ток вторичной цепи — чем он больше, тем больше нагрузка).
    К трансформатору подключаются различного рода потребители: электрические двигатели, освещение и т. п.

  • Режим холостого хода, т.е. режим ненагруженного трансформатора, при котором...

    4 слайд

    Режим холостого хода,
    т.е. режим ненагруженного трансформатора, при котором цепь вторичной обмотки разомкнута (ток не течет)
    С помощью режима холостого хода можно определить КПД трансформатора. Коэффициент трансформации. А также потери в сердечнике.
    Подключена к нагрузке с очень большим сопротивлением (например, в цепь включен вольтметр).
    или

  • Режим короткого замыкания трансформатора- это режим при котором вторичная об...

    5 слайд

    Режим
    короткого замыкания трансформатора- это режим при котором вторичная обмотка замкнута накоротко ( или подключена к нагрузке с очень малым сопротивлением (например, в цепь включен амперметр).
    Различают два вида короткого замыкания — аварийное и испытательное.
    При испытательном
    определяются активные потери в меди обмоток
    (их нагревание).

  • ВИДЫ ТРАНСФОРМАТОРОВ

    6 слайд

    ВИДЫ
    ТРАНСФОРМАТОРОВ

  • СиЛОВЫЕ ТРАНСФОРМАТОРЫС. Карандась – ГЭМ-17

    7 слайд

    СиЛОВЫЕ ТРАНСФОРМАТОРЫ
    С. Карандась – ГЭМ-17

  • Силово́й трансформа́тор (СТ) — электротехническое устройство в сетях электрос...

    8 слайд

    Силово́й трансформа́тор (СТ) — электротехническое устройство в сетях электроснабжения (электросетях) с двумя или более обмотками (трансформатор), который посредством электромагнитной индукции преобразует одну величину переменного напряжения и тока в другую величину переменного напряжения и тока, той же частоты без изменения её передаваемой мощности
    Классификаця СТ по:
    количеству обмоток — двух- и многообмоточные;
    количеству фаз — одно- и трехфазные;
    назначению — понижающие и повышающие;
    типу исполнения — сухие, масляные и с жидким негорючим диэлектриком;
    возможности регулирования выходного напряжения — нерегулируемые и регулируемые (регулируемые под нагрузкой РПН и с переключателем без возбуждения ПБВ);
    климатическому исполнению — наружные и внутренние.

  •    Основу любого силового трансформатора составляет сердечник из ферромагнитн...

    9 слайд

       Основу любого силового трансформатора составляет сердечник из ферромагнитного материала с несколькими обмотками.
    Переменный ток, проходящий через витки первичной обмотки создает магнитный поток в сердечнике, который свою очередь, индуцирует 
    ЭДС во всех остальных обмотках.
           Обмотки трансформатора выполняют в большинстве случаев из изолированных медных проводов круглого или прямоугольного сечения. Обычно первой наматывается обмотка низкого напряжения, поскольку уменьшаются затраты на изолирование обмотки от сердечника.
       Между отдельными слоями обмоток, а также между самими обмотками при изготовлении предусматривают пустоты для циркуляции охладителя.
       В качестве охладителя в мощных трансформаторах применяется масло, которое отбирает тепло от обмоток и передает его в окружающую среду через радиаторные трубки.

  • slide 10

  • slide 11

  • Автотрансформаторы В. Коротков – ГЭМ-17

    12 слайд

    Автотрансформаторы
    В. Коротков – ГЭМ-17

  • А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная...

    13 слайд

    А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую.
    Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные электрические напряжения

  • Преимуществом автотрансформатора является более высокий КПД, поскольку лишь ч...

    14 слайд

    Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

  • Пример Понижающего трансформатора

    15 слайд

    Пример Понижающего трансформатора

  • Согласующий трансформаторЧто это такое? Где он применяется? Из чего состоит?...

    16 слайд

    Согласующий трансформатор
    Что это такое?
    Где он применяется?
    Из чего состоит?
    Сейчас узнаем!
    Г. Сарапулов — ГЭМ-17

  • Что это такое?Согласующий трансформатор – трансформатор, применяемый для согл...

    17 слайд

    Что это такое?
    Согласующий трансформатор – трансформатор, применяемый для согласования сопротивления различных частей электронных схем!
    Вот так он выглядит

  • Где он применяется?Применяется для подключения низкоомной нагрузки к каскадам...

    18 слайд

    Где он применяется?
    Применяется для подключения низкоомной нагрузки к каскадам электронных устройств, имеющим высокое входное или выходное сопротивление.
    Верно, верно

  • Из чего ты состоишь?Да как и все нормальные трансформаторы! Пару обмоток и се...

    19 слайд

    Из чего ты состоишь?
    Да как и все нормальные трансформаторы!
    Пару обмоток и сердечник!
    И выгляжу так же!

  • slide 20

  • Трансформаторами напряжения называются аппараты, предназначенные для преобра...

    21 слайд

    Трансформаторами напряжения 
    называются аппараты, предназначенные для преобразования переменного тока высшего напряжения в переменный ток низшего напряжения и питания параллельных катушек измерительных приборов и реле. Число витков вторичной обмотки W2 <W1, так как все измерительные трансформаторы напряжения – понижающего типа.

  • Трансформатор токаЕ. Дзадзаев – ГЭМ-17

    22 слайд

    Трансформатор тока
    Е. Дзадзаев – ГЭМ-17

  • Трансформа́тор то́ка — трансформатор, первичная обмотка которого подключена к...

    23 слайд

    Трансформа́тор то́ка — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления.
    Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.

  • Устройство трансформатора

    24 слайд

    Устройство трансформатора

  • Коэффициент трансформации- показывает во сколько раз происходит изменение пер...

    25 слайд

    Коэффициент трансформации- показывает во сколько раз происходит изменение переменного напряжения.

  •   Трансформаторами тока называются аппараты, предназначенные для преобразован...

    26 слайд

     

    Трансформаторами тока называются аппараты, предназначенные для преобразования тока любой величины в ток, допустимый для измерений нормальными приборами, а также для питания различных реле и обмоток электромагнитов. Число витков вторичной обмотки трансформатора тока N2 > N1

  • Разделительные трансформаторыС. Лычагин – ГЭМ - 17

    27 слайд

    Разделительные
    трансформаторы
    С. Лычагин – ГЭМ — 17

  • Принцип работыРазделительный трансформатор оснащают экраном между первичной и...

    28 слайд

    Принцип работы
    Разделительный трансформатор оснащают экраном между первичной и вторичной  обмотками, экран заземляется.
    На общем магнитопроводе размещены две обмотки из одинакового изолированного провода с идентичными намоточными характеристиками.

  • Схема подключенияПринципиальная схема подключения разделительного трансформат...

    29 слайд

    Схема подключения
    Принципиальная схема подключения разделительного трансформатора и приборов к нему:

  • НазначениеРазделительный трансформатор предназначен для повышения уровня безо...

    30 слайд

    Назначение
    Разделительный трансформатор предназначен для повышения уровня безопасности электрических приборов и снижения уровня электротравматизма.
    Так как опасность поражения электрическим током все-же существует, следует соблюдать следующие правила:
    1. Нельзя прикасаться к двум выходным клеммам трансформатора одновременно;
    2. Первичная обмотка РТ должна защищаться УЗО;
    3. Корпуса подключаемых к трансформатору приборов не заземляют;
    4. Запитывать от РТ допускается только одно электрическое устройство.

  • СВАРОЧНЫЙ ТРАНСФОРМАТОР Подготовил проскурин Дмитрий Группы гэм-17

    31 слайд

    СВАРОЧНЫЙ ТРАНСФОРМАТОР
    Подготовил проскурин Дмитрий
    Группы гэм-17

  • Устройство сварочного трансформатора и характеристикиДля возникновения дуги,...

    32 слайд

    Устройство сварочного трансформатора и характеристики

    Для возникновения дуги, обеспечивающей разогрев и расплавление кромок заготовки, требуется изменить характеристики электричества подаваемого из сети.
    Сварочный трансформатор преобразует поступающее электричество следующим образом:
    напряжение снижает;
    силу тока поднимает.

  • В преобразовании электричества принимают участие следующие узлы: магнитопрово...

    33 слайд

    В преобразовании электричества принимают участие следующие узлы:
    магнитопровод;
    первая обмотка, собираемая из изолированного кабеля;
    перемещающейся второй обмотки. Ее выполняют из провода без изоляции, это необходимо для повышения тепловой отдачи;
    винтовая пара;
    штурвал для управления винтовой парой;
    клеммники для сварных кабелей.

  • slide 34

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 142 682 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 01.02.2019
  • 1163
  • 4
  • 01.02.2019
  • 966
  • 2
  • 01.02.2019
  • 1530
  • 49
  • 01.02.2019
  • 1523
  • 13
  • 01.02.2019
  • 2218
  • 29
  • 01.02.2019
  • 1839
  • 8
  • 01.02.2019
  • 218
  • 0
  • 01.02.2019
  • 419
  • 0

Вам будут интересны эти курсы:

  • Курс профессиональной переподготовки «Управление персоналом и оформление трудовых отношений»

  • Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»

  • Курс повышения квалификации «Экономика и право: налоги и налогообложение»

  • Курс повышения квалификации «Основы построения коммуникаций в организации»

  • Курс профессиональной переподготовки «Организация деятельности по подбору и оценке персонала (рекрутинг)»

  • Курс профессиональной переподготовки «Организация менеджмента в туризме»

  • Курс повышения квалификации «Основы менеджмента в туризме»

  • Курс повышения квалификации «Финансы предприятия: актуальные аспекты в оценке стоимости бизнеса»

  • Курс повышения квалификации «Финансовые инструменты»

  • Курс профессиональной переподготовки «Организация процесса страхования (перестрахования)»

  • Курс профессиональной переподготовки «Организация и управление процессом по предоставлению услуг по кредитному брокериджу»

30.11.2021

Трансформаторы за время эксплуатации работают в разных режимах. Но не все они одинаково сказываются на сроке службы электромагнитного оборудования. Режимы работы силового трансформатора зависят от его нагрузки, напряжения обмоток, температуры масла и обмоток, условий окружающей среды и других параметров.

Режимы работы трансформатора:

  • нормальный;
  • перегрузочный;
  • аварийный.

Нормальные режимы работы трансформатора

К ним относятся номинальный, оптимальный, режим холостого хода и режим параллельной работы.

Номинальный и оптимальный режим

Еще эти режимы трансформатора называют рабочими. Потому что при них напряжение и ток близки к номинальным (на которые рассчитано оборудование) условиям.

Номинальный режим – это когда ток и напряжение на первичной обмотке соответствуют номинальным показателям. Но на деле трансформатор редко работает в таких условиях. Потому что в сети происходят постоянные колебания нагрузки. При таком режиме трансформатор работает исправно. Но коэффициент полезного действия (КПД) оборудования не достигает максимума.

Оптимальный режим – это режим, при котором трансформатор имеет максимальный КПД. Как правило, максимальные КПД трансформатор показывает под нагрузкой 50-70% от номинальной. Современные силовые трансформаторы работают с КПД 90% и выше.

На деле большинство трансформаторов не работают в одном и том же режиме. Потому что нагрузка в сети непостоянная. 

Холостой режим трансформатора

При режиме холостого хода на первичную обмотку трансформатора поступает напряжение, а вторичная обмотка не подключена к сети потребителя электроэнергии. В таком режиме КПД равен 0.

На холостом ходу силового трансформатора определяют коэффициент трансформации, мощность потерь в металле и параметры намагничивающей ветви схемы замещения. Для таких измерений на первичную обмотку трансформатора пускают электрический ток номинального напряжения.

А для трансформатора напряжения режим холостого хода является рабочим.

Режим параллельной работы

Два трансформатора устанавливаются в сетях, питающих энергией потребителей первой и второй категории. Важно подключить трансформаторы так, чтобы ни один из них не испытывал перегрузки.

Для этого у трансформаторов:

  • должны быть одни и те же группы соединений обмоток;
  • коэффициенты трансформации не должны отличаться больше, чем на 0,5 %;
  • номинальные мощности должны соотноситься не более, чем один к трем;
  • напряжения короткого замыкания должны различаться не более, чем на 10 %;
  • должна выполняться фазировка трансформаторов.

Перегрузочный режим

Трансформатор испытывает перегрузки при воздействии нагрузок и температур выше допустимой нормы. Для каждой модели эти показатели свои. Производители силовых трансформаторов предусматривают возможность работы оборудования в условиях перегрузки. Но если устройство испытывает их продолжительное время или регулярно – это уменьшает срок службы оборудования. Допустимые перегрузки описаны в стандартах. Например, для масляных трансформаторов разработан ГОСТ 14209-97.   

Аварийный режим

Трансформатор находится в аварийном режиме, если на него воздействует электрический ток, который сильно превосходит номинальные величины. Дальше давать работать оборудованию нельзя. Как правило, в трансформаторах существуют автоматические выключатели. Они отключают питание оборудования.

Признаки аварийного режима:

  • громкий и неритмичный шум и треск в баке трансформатора;
  • повышение температуры рабочей части трансформатора;
  • утечка трансформаторного масла.

Часто аварийный режим возникает из-за короткого замыкания во вторичной обмотке. Исключение – трансформаторы тока и сварочные трансформаторы. Для них режим короткого замыкания является рабочим.

Напряжение во время короткого замыкания (КЗ) – это еще и важный показатель, который влияет на эксплуатацию трансформатора. Его измеряют в процентах. Для трансформаторов со средним показателем мощности напряжение КЗ составляет 5-7%, а для более мощных – 6-12 %.

Важно не допускать работы трансформатора в аварийном режиме вообще и ограничивать его перегрузки. В этом случае оборудование прослужит вам заявленный производителем срок.

Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго. Подробней об этом — ниже в статье

Режимы работы трансформатора

Существует пять характерных режимов работы трансформатора:

  1. Рабочий режим;
  2. Номинальный режим;
  3. Оптимальный режим;
  4. Режим холостого хода;
  5. Режим короткого замыкания;

Рабочий режим

Режим характеризуется следующими признаками:

  • Напряжение первичной обмотки близко к номинальному значению или равно ему (dot{u}_1 ≈ dot{u}_{1ном});
  • Ток первичной обмотки меньше своего номинального значения или равен ему (dot{i}_1 ≤ dot{i}_1ном).

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

Номинальный режим работы

Характерные признаки режима:

  • Напряжение первичной обмотки равно номинальному (dot{u}_1 = dot{u}_{1ном});
  • Ток первичной обмотки равен номинальному (dot{i}_1 = dot{i}_{1ном}).

Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.

Оптимальный режим работы

Режим характеризуется условием:

begin{equation}
k_{нг} = sqrt{P_{хх}over P_{кз}}
end{equation}

Где (P_{хх}) — потери холостого хода;
    (P_{кз}) — потери короткого замыкания;
    (k_{нг}) — коэффициент нагрузки трансформатора, определяемый по формуле:

begin{equation}
k_{нг} = {I_2over I_{2ном}}
end{equation}

Где (P_2) — ток нагрузки вторичной обмотки;
    (P_{2ном}) — номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри «Трансформаторы. Оптимальный режим работы»).

Режим холостого хода

Характерные признаки режима:

  • Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки1 трансформатора;
  • К первичной обмотке приложено напряжение (dot{u}_{1хх} = dot{u}_{1ном});
  • Ток вторичной обмотки (dot{i}_2 ≈ 0) (для трехфазного трансформатора — (dot{i}_{2ф} ≈ dot{i}_{2л} ≈ 0).

На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 — трехфазного двухобмоточных трансформаторов.

img 1 light

Рисунок 1 — Схема опыта холостого хода однофазного двухобмоточного трансформатора

img 2 light

Рисунок 2 — Схема опыта холостого хода трехфазного двухобмоточного трансформатора

По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока (i_х), мощности (ΔQ_хх) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри «Опыт холостого хода трансформатора»).

    Примечание:

  1. Под сопротивлением номинальной нагрузки обмотки понимается величина (R_{Нном}), равная отношению номинального напряжения обмотки (U_{ном}) к её номинальному току обмотки (I_{ном})

Режим короткого замыкания

Режим короткого замыкания характеризуется:

  • Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
  • К первичной обмотке приложена такая величина напряжения (dot{u}_1), что ток первичной обмотки равен её номинальному току (dot{i}_1 = dot{i}_{1ном})
  • Напряжение вторичной обмотки (dot{u}_2 = 0) (для трехфазного трансформатора — (dot{u}_{2ф} = dot{u}_{2л} = 0).

Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 — для трехфазного двухобмоточных трансформаторов.

img 3 light

Рисунок 3 — Схема опыта короткого замыкания однофазного двухобмоточного трансформатора

img 4 light

Рисунок 4 — Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения (u_к), мощности (ΔP_кз) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри «Опыт короткого замыкания трансформатора»).

Список использованных источников

  1. Бессонов, Л.А. Теоретические основы электротехники: учебник / Л.А. Бессонов — Москва: Высшая школа, 1996 — 623 с.
  2. Вольдек, А.И. Электрические машины: учебник для студентов вузов / А.И. Вольдек — СПб.: Энергия, 1978 — 832 с.
  3. Касаткин А.С. Электротехника: учебное пособие для вузов / А.С. Касаткин, М.В. Немцов — Москва: Энергоатомиздат, 1995 — 240 с.

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов  и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Гигантский трансформатор

 

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

Принцип устройства трансформатора

 

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

назначение и принцип работы трансформатора

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Трансформатор формула

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

Сухие трансформаторы серии ТСЛ

 

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике  с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!



Электрический трансформатор

Основное оборудование электрических станций и подстанций

Трансформатор

Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

Базовые принципы действия трансформатора

Работа трансформатора основана на двух базовых принципах:

  • Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
  • Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т.д.

Исключение — силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П.Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

В случае силового трансформатора, работающего в схеме Преобразователя Мотовилова, он преобразует постоянный силовой ток первичной обмотки в постоянный силовой ток вторичной обмотки при прямоугольном переменном напряжении на обеих обмотках. Последнее выпрямляется в постоянное напряжение так, что на входе и выходе схемы Мотовилова действуют постоянные токи при постоянном напряжении.

Основные части конструкции трансформатора

Основными частями конструкции трансформатора являются:

  • магнитопровод
  • обмотки
  • каркас для обмоток
  • изоляция
  • система охлаждения
  • прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т.п.)

В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:

  • Стержневой
  • Броневой
  • Тороидальный

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надежность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

Режимы работы трансформатора

Режим холостого хода

Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. По первичной обмотке протекает ток холостого хода, главной составляющей которого является реактивный ток намагничивания. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике (т.н. «потери в стали»).

Режим нагрузки

Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. В вторичной обмотке протекает ток нагрузки, а в первичной — ток, который можно представить как сумму тока нагрузки (пересчитанного из соотношения числа витков обмоток и вторичного тока) и ток холостого хода. Данный режим является основным рабочим для трансформатора.

Режим короткого замыкания

Этот режим получается в результате замыкания вторичной цепи накоротко. Это разновидность режима нагрузки, при котором сопротивление вторичной обмотки является единственной нагрузкой. С помощью опыта короткого замыкания можно определить потери на нагрев обмоток в цепи трансформатора («потери в меди»). Это явление учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Режим холостого хода

При равенстве вторичного тока нулю (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока.

Режим нагрузки

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток нагрузки, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.

Виды трансформаторов

Силовой трансформатор

Силовой трансформатор переменного тока — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6,10 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).

Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока».

Автотрансформатор

Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно.

Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Трансформатор тока

Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.

Трансформатор напряжения

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

Разделительный трансформатор

Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

Согласующий трансформатор

Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.

Пик-трансформатор

Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

Сдвоенный дроссель

Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Трансфлюксор

Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.

История создания трансформаторов

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).

Братья Гопкинсоны разработали теорию электромагнитных цепей.

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

В 1848 году французский механик Г.Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. В 1885г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.

Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.



Понравилась статья? Поделить с друзьями:
  • Как сделать успешный бизнес на ритуальных услугах
  • Выездной кейтеринг в России
  • Какие бывают режимы работы трансформатора
  • Какие бывают режимы работы сотрудников
  • Какие бывают режимы работы нейтрали