Какой режим работы электрической цепи называется номинальным

Лекция 1.6. Режимы работы электрических цепей по теме Электротехника по предмету Физика
article placeholder

1.6. Режимы работы электрических цепей.

Как указывалось выше, любая электрическая цепь состоит из источников и нагрузок (приемников). При включении различного количества приемников с изменением их параметров будут изменяться напряжения, токи и мощности в электрической цепи, от значений которых зависит режим работы цепи и ее элементов. Наиболее характерными являются следующие режимы: номинальный, согласованный, холостого хода и короткого замыкания.

 Номинальным называется режим, при котором приемник работает со значениями тока, напряжения и мощности, на которые он рассчитан и которые называются его номинальными (или техническими) данными. Номинальные мощности и токи многих элементов электрических цепей (двигателей, генераторов, резисторов и др.) устанавливаются, исходя из нагревания их до наибольшей допускаемой температуры. Номинальные данные указываются в справочной литературе, технической документации или на самом элементе.

С учетом номинальных напряжений и токов источников и приемников производится выбор проводов и других элементов электрических цепей.

 Согласованным называется режим, при котором мощность, отдаваемая источником или потребляемая приемником, достигает максимального значения. Это возможно при определенном соотношении (согласовании) параметров электрической цепи, откуда и вытекает название данного режима.

 Под режимом холостого хода понимается такой режим, при котором приемник отключен от источника. При этом источник не отдает энергию во внешнюю цепь, а приемник не потребляет ее.

Режимом короткого замыкания называется режим, возникающий при 0 1.6. rezhimy raboty elektricheskih cepeyсоединении между собой выводов источника, приемника или соединительных проводов, а также иных элементов электрической цепи, между которыми имеется напряжение. При этом сопротивление в месте соединения оказывается практически равным нулю. При коротких замыканиях могут возникать недопустимо большие токи, электрическая дуга, возможно резкое снижение напряжения, поэтому режим короткого замыкания рассматривают, как аварийный.

Энергетические установки работают чаще всего в режиме, при котором токи и мощности не превышают номинальных значений, а напряжения близки к номинальным.

Рассмотрим простейшую неразветвленную цепь (рис. 1.14, а). В этой цепи участок  amb представляет собой простейший пассивный двухполюсник, являющийся приемником, участок  anb — простейший активный двухполюсник, являющийся источником.

Рекомендуемые материалы

Для рассматриваемой цепи по второму закону Кирхгофа можно написать:

1 1.6. rezhimy raboty elektricheskih cepey                             (1.16)

Формула для определения соотношения между напряжением  U и э.д.с. источника  E, полученная из (1.16),

2 1.6. rezhimy raboty elektricheskih cepey                                           (1.17)

называется внешней характеристикой источника, которая связывает напряжения на зажимах  источника с величиной тока через источник        (рис. 1.14б).

Очевидно, что напряжение на зажимах источника  U тем больше, чем меньше его внутреннее сопротивление при одном и том же токе через источник.

В идеальном источнике напряжения r0=0, U=E во всем диапазоне изменения тока (рис. 1.14, б кривая 2).

Если умножить (1.16) на ток I , то получим соотношение между мощностями

3 1.6. rezhimy raboty elektricheskih cepey                                   (1.18)

Произведение EI представляет собой мощность, вырабатываемую источником. Правая часть (1.18) содержит потери мощности во внутреннем сопротивлении источника  I2r0, и мощность, потребляемую приемником I2r. Если из вырабатываемой мощности вычесть потери мощности во внутреннем сопротивлении источника, получим мощность UI, отдаваемую источником во внешнюю цепь

4 1.6. rezhimy raboty elektricheskih cepey                                 (1.19)

Мощность, отдаваемая источником в данной цепи, равна мощности, потребляемой приемником

5 1.6. rezhimy raboty elektricheskih cepey                                       (1.20)

Вырабатываемая источником мощность определяется произведением:

6 1.6. rezhimy raboty elektricheskih cepey(1.21)

причем положительные направления  э.д.с. и тока совпадают. Отдаваемая им мощность:

7 1.6. rezhimy raboty elektricheskih cepey8 1.6. rezhimy raboty elektricheskih cepey(1.22)

где направления напряжения и тока противоположны, а мощность, потребляемая приемником  определяется произведением:

9 1.6. rezhimy raboty elektricheskih cepeyРис 1.1611 1.6. rezhimy raboty elektricheskih cepey                               (1.23)

где положительные направления тока и напряжения совпадают. Такие взаимные направления тока и э.д.с., а также тока и напряжения характерны для источников и приемников в любых электрических цепях (рис. 1.15 а,б).

Отношение мощности, отдаваемой источником, к вырабатываемой им мощности  называется                                                                                      

коэффициентом полезного действия (КПД)

источника

Рис  1.15

                           12 1.6. rezhimy raboty elektricheskih cepey                                       (1.24)

Пользуясь полученными соотношениями, установим, как будут меняться значения тока, напряжения, мощности при изменении сопротивления r, т.е. в различных режимах работы источника. При отключении источника с помощью выключателя В (рис. 1.14а) электрическая цепь будет работать в режиме холостого хода. В этом случае следует считать r равным бесконечности, при этом I=E/(r+ r0)=0. Вследствие чего оказываются равными нулю падение напряжения Ir0, потери мощности I2r и мощности EI и UI. Т.к. Ir0=0, то согласно (1.17)  U=Ux=E. Уменьшение сопротивления r приводит к увеличению тока I, падения напряжения Ir0, мощности EI. Напряжение U при этом уменьшается. О характере изменения мощности приемника можно судить, анализируя выражение

13 1.6. rezhimy raboty elektricheskih cepey                       (1.25)

Зависимость

14 1.6. rezhimy raboty elektricheskih cepey 

Обратите внимание на лекцию «47. Федеральный надзор и контроль в области безопасности».

представлена на рис. 1.16.

Уменьшение сопротивления r , а значит увеличение тока I приводит к возрастанию Рпотр и при r=r0 Рпотр =Рmax , что соответствует режиму согласованной нагрузки. В согласованном режиме U=0.5E, Рпотр=0.5, Рвыр, η=0.5. Дальнейшее уменьшение r приводит к уменьшению Рпотр.

Для номинального режима работы характерно следующее соотношение сопротивлений r >> r0, что обеспечивает поступление основной части вырабатываемой мощности к приемнику. При этом  к.п.д. принимает значения, близкие к 1 , Uном=Iномr>>Iномr0 и согласно (1.17) U близко к E.

В режиме короткого замыкания r=0 и ток короткого замыкания оказывается намного больше номинального тока: Iк=E/r0>>Iном

При коротком замыкании U=IKr=0, Рпотр=UIK=0. Мощность Рвыр=EIK значительно возрастает и преобразуется в теплоту в сопротивлении r0. Последнее может привести с выходу из строя изоляции и даже к перегоранию проводов.

На внешней характеристике источника рис.1.14, б, которая подчиняется уравнению (1.17) и представляет собой прямую при E=const и ro= const, указаны точки, соответствующие режимам холостого хода, короткого замыкания и номинальному режиму работы источника. Здесь же приведена внешняя характеристика идеального источника э.д.с. (кривая 2 на рис. 1.14, б),для которого r0=0,U=E=const.

Электрическая цепь это совокупность
устройств, предназначенных для
генерирования, передачи, преобразования
и использования электрической энергии,
процессы в которых могут быть описаны
с помощью понятий об электрическом
токе, напряжении и ЭДС

2.2 Электрическая
цепь

(Адрес
Блок 4
)
это совокупность устройств,
предназначенных для генерирования,
передачи, преобразования и использования
электрической энергии, процессы в
которых могут быть описаны с помощью
понятий об электрическом токе,
напряжении и ЭДС

Вернуться к тексту

В состав электрических
цепей (2.2)входит также коммутационная
и защитная аппаратура. В состав
электрических цепей могут включаться
электрические приборы для измерения
силы тока, напряжения и мощности.

При описании электрических цепей
используют следующие понятия:
ветвь электрической цепи, узел
электрической цепи, контур, двухполюсник,
четырехполюсник.

Ветвь электрической цепи— это
участок, элементы которого соединены
последовательно. Ток во всех элементах
один и тот же.

2.3 Ветвь электрической
цепи

(Адрес
Блок 4
)
участок, элементы которого
соединены последовательно.

Вернуться к тексту

Узел электрической цепи — это точка
соединения трех и болееветвей
электрической цепи (2.3).

2.4
Узел
электрической
цепи

(Адрес
Блок 4
)
это точка соединения трех
и более ветвей.

Вернуться к тексту

Контур — это любой путь вдоль ветвей
электрической цепи, начинающийся и
заканчивающийся в одной и той же точке.

2.5
Контур

(Адрес
Блок 4
)
это любой путь вдоль ветвей
электрической цепи, начинающийся и
заканчивающийся в одной и той же точке.

Двухполюсник — это часть электрической
цепи с двумя выделенными
выводами.

Четырехполюсник — часть электрической
цепи с двумя парами выводов.

Режимы работы электрических цепей

Электрическая цепь в
зависимости от значения сопротивления
нагрузки R может работать в различных
характерных режимах:

  • номинальном;

  • согласованном;

  • холостого хода;

  • короткого замыкания.

Номинальный режим— это расчетный
режим, при котором элементы цепи
(источники, приемники, линия электропередачи)
работают в условиях, соответствующих
проектным данным и параметрам.

Изоляция источника, линии электропередачи,
приемников рассчитана на определенное
напряжение, называемое номинальным.
Превышение этого напряжения приводит
к пробою изоляции, увеличению токов в
цепи и другим аварийным последствиям.

Тепловой режим источников или приемников
энергии рассчитан на выделение в них
определенного количества тепла, то есть
на определенную мощность, а последняя
зависит от квадрата тока RI2,
rI
2.

Расчетный по тепловому режиму ток
называется номинальным.

Номинальное значение мощности для
источника электрической энергии — это
наибольшая мощность, которую источник
при нормальных условиях работы может
отдать во внешнюю цепь без опасности
пробоя изоляции и превышения допустимой
температуры нагрева.

Для приемников электрической энергии
типа двигателей — это мощность, которую
могут развивать на валу при нормальных
условиях работы. Для остальных приемников
электрической энергии (нагревательные
и осветительные приборы) — это их мощность
при номинальном режиме. Номинальные
значения напряжений, токов и мощностей
указывают в паспортах изделий.

Согласованный режим работы— это
режим, в котором работает электрическая
цепь (источник и приемник), когда
сопротивление нагрузки R равна внутреннему
сопротивлению источника r. Этот режим
характеризуется передачей от данного
источника к приемнику максимально
возможной мощности. Однако в согласованном
режиме К.П.Д.=
0,5 — низкий и для мощных цепей работа в
согласованном режиме экономически
невыгодна. Согласованный режим
применяется, главным образом, в маломощных
цепях, если К.П.Д. не имеет существенного
значения, а требуется получить в приемнике
возможно большую мощность.

Режим холостого хода и короткого
замыкания.
Эти режимы являются
предельными режимами работы электрической
цепи.

В режиме холостого хода внешняя цепь
разомкнута и ток равен нулю. Так как ток
равен нулю, то падение напряжения на
внутреннем сопротивлении источника
так же равно нулю (rI = 0) и напряжение
на выводах источника равно ЭДС (= U). Из этих соотношений вытекает метод
измеренияЭДС (2.7)источника: при разомкнутой внешней цепи
вольтметром, сопротивление которого
можно считать бесконечно большим,
измеряют напряжение на его выводах.

В режиме короткого замыкания выводы
источника соединены между собой,
например, сопротивление нагрузки
замкнуто проводником с нулевым
сопротивлением. Напряжение на приемнике
при этом равно нулю.

Сопротивление всей цепи равно внутреннему
сопротивлению источника, и ток короткого
замыкания в цепи равен:

Iк.з. =
/ r.

(2.14)

Он достигает максимально возможного
значения для данного источника и может
вызывать перегрев источника и даже его
повреждение. Для защиты источников
электрической энергии и питающих цепей
от токов короткого замыкания в маломощных
цепях устанавливают плавкие предохранители,
в более мощных цепях — отключающие
автоматические выключатели, а
высоковольтных цепях — специальные
высоковольтные выключатели.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Для электрической цепи наиболее характерными являются ре­жимы работы: нагрузочный, холостого хода и короткого замыкания.

Нагрузочный режим работы (рис. 19, а).

Bildschirmfoto 2020 11 20 um 15.34.43

Рис. 19. Схемы, поясняющие нагрузочный режим (а) и режим холостого хода (б)Рис. 19. Схемы, поясняющие нагрузочный режим работы (а) и режим холостого хода (б)

Рассмотрим работу электри­ческой цепи при подключении к источнику какого-либо приемника с сопротивлением R (резистора, электрической лампы и т. п.).

На основании закона Ома э. д. с. источника равна сумме напряжений IR на внешнем участке цепи и IRo на внутреннем сопротивлении источника:

E = IR + IR0 (12)

Учитывая, что напряжение Uи на зажимах источника равно падению напряжения IR во внешней цепи, получим:

E = Uи+IR0 (13)

Эта формула показывает, что э. д. с. источника больше напряжения на его зажимах на значение падения напряжения внутри источника. Падение напряжения IRo внутри источника зависит от тока в цепи I (тока нагрузки), который определяется сопротивлением R приемника. Чем больше будет ток нагрузки, тем меньше напряжение на зажимах источника:

Uи = E – IR0 (13′)

Падение напряжения в источнике зависит также и от внутреннего сопротивления Ro. Согласно уравнению (13′) зависимость напряжения Uи от тока I изображается прямой линией (рис. 20). Эту зависимость называют внешней характеристикой источника.

Bildschirmfoto 2020 11 20 um 15.35.04

Рис. 20. Внешняя характеристика источникаРис. 20. Внешняя характеристика источника

Из всех возможных нагрузочных режимов работы наиболее важным является номинальный. Номинальным называется режим работы, установленный заводом-изготовителем для данного электротехнического устройства в соответствии с предъявляемыми к нему техническими требованиями.

Он характеризуется номинальными напряжением, током (точка Н на рис. 20) и мощностью. Эти величины обычно указывают в паспорте данного устройства.

От номинального напряжения зависит качество электрической изоляции электротехнических установок, а от номинального тока — температура их нагрева, которая определяет площадь поперечного сечения проводников, теплостойкость применяемой изоляции и интенсивность охлаждения установки. Превышение номинального тока в течение длительного времени может привести к выходу из строя установки.

Режим холостого хода (рис. 19, б).

Bildschirmfoto 2020 11 20 um 15.34.43

Рис. 19. Схемы, поясняющие нагрузочный режим (а) и режим холостого хода (б)Рис. 19. Схемы, поясняющие нагрузочный режим работы (а) и режим холостого хода (б)

При этом режиме присоединенная к источнику электрическая цепь разомкнута, т. е. тока в цепи нет. В этом случае внутреннее падение напряжения IRo будет равно нулю и формула (13) примет вид

E = Uи (14)

Таким образом, в режиме холостого хода напряжение на зажимах источника электрической энергии равно его э. д. с. (точка X на рис. 20). Это обстоятельство можно использовать для измерения э. д. с. источников электроэнергии.

Режим короткого замыкания (рис. 21).

Bildschirmfoto 2020 11 20 um 15.35.37
Рис. 21. Схема короткого замыкания в цепи источника электрической энергииРис. 21. Схема короткого замыкания в цепи источника электрической энергии

Коротким замыканием (к. з.) называют такой режим работы источника, когда его зажимы замкнуты проводником, сопротивление которого можно считать равным нулю. Практически к. з. возникает при соединении друг с другом проводов, связывающих источник с приемником, так как эти провода имеют обычно незначительное сопротивление и его можно принять равным нулю.

К. з. может происходить в результате неправильных действий персонала, обслуживающего электротехнические установки (рис. 22, а), или при повреждении изоляции проводов (рис. 22,б, в); в последнем случае эти провода могут соединяться через землю, имеющую весьма малое сопротивление, или через окружающие металлические детали (корпуса электрических машин и аппаратов, элементы кузова локомотива и пр.).

Bildschirmfoto 2020 11 20 um 15.35.58

Рис. 22. Возможные причины короткого замыкания в электрических установкахРис. 22. Возможные причины короткого замыкания в электрических установках

При коротком замыкании ток

Iк.з = E / R0 (15)

Ввиду того что внутреннее сопротивление источника Ro обычно очень мало, проходящий через него ток возрастает до весьма больших значений. Напряжение же в месте к. з. становится равным нулю (точка К на рис. 20), т. е. электрическая энергия на участок электрической цепи, расположенный за местом к. з., поступать не будет.

Короткое замыкание является аварийным режимом, так как возникающий при этом большой ток может привести в негодность как сам источник, так и включенные в цепь приборы, аппараты и провода. Лишь для некоторых специальных генераторов, например сварочных, короткое замыкание не представляет опасности и является рабочим режимом.

В электрической цепи ток проходит всегда от точек цепи, находящихся под большим потенциалом, к точкам, находящимся под меньшим потенциалом. Если какая-либо точка цепи соединена с землей, то потенциал ее принимается равным нулю. В этом случае потенциалы всех других точек цепи будут равны напряжениям, действующим между этими точками и землей.По мере приближения к заземленной точке уменьшаются потенциалы различных точек цепи, т. е. напряжения, действующие между этими точками и землей.

По этой причине обмотки возбуждения тяговых двигателей и вспомогательных машин, в которых при резких изменениях тока могут возникать большие перенапряжения, стараются включать в силовую цепь ближе к «земле» (за обмоткой якоря). В этом случае на изоляцию этих обмоток будет действовать меньшее напряжение, чем если бы они были включены ближе к контактной сети на электровозах постоянного тока или к незаземленному полюсу выпрямительной установки на электровозах переменного тока (т.е. находились бы под более высоким потенциалом).

Точно также точки электрической цепи, находящиеся под более высоким потенциалом, являются более опасными для человека, соприкасающегося с токоведущими частями электрических установок. При этом он попадает под более высокое напряжение по отношению к земле.

Следует отметить, что при заземлении одной точки электрической цепи распределение токов в ней не изменяется, так как при этом образуется никаких новых ветвей, по которым могли бы протекать токи. Если заземлить две (или больше) точки цепи, имеющие разные потенциалы, то через землю образуются дополнительная токопроводящая ветвь (или ветви) и распределение тока в цепи меняется.

Следовательно, нарушение или пробой изоляции электрической установки, одна из точек которой заземлена, создает контур, по которому проходит ток, представляющий собой, по сути дела, ток короткого замыкания. То же происходит в незаземленной электрической установке при замыкании на землю двух ее точек. При разрыве электрической цепи все ее точки до места разрыва оказываются под одним и тем же потенциалом.

Совокупность объектов и устройств, обеспечивающих постоянный и непрерывный путь для движения электрического тока можно назвать электрической цепью.

Напряжение и сила тока — это неотъемлемые элементы каждой электрической цепи. Такие явления, наряду с прочими магнитными и электрическими явлениями, изучает наука, называемая электротехникой. Еще одной целью этой науки является поиск возможности практических применений, а не только теоретического изучения.

Если учесть, что в электрической цепи имеются разные элементы, то можно сказать, что существует несколько режимов работы цепи. Эти элементы подразделены на три основных вида — это источники энергии, проводники и приёмники, т.е. первые элементы служат для выработки электроэнергии, приёмники преобразуют электроэнергию в другие ее виды, а проводники передают энергию от источников к приёмникам. Все элементы цепи — источники тока, проводники и приёмники — это устройства, без которых невозможно существование электрической цепи. При отсутствии одного из этих элементов работа цепи просто невозможна. В зависимости от того какое строение и какие элементы в цепи содержатся, все электрические цепи бывают линейные и нелинейные. При этом каждую цепь можно изобразить в схеме, что позволяет сделать работу с цепями более удобной.

Выделяют три режима работы цепи:

  • короткого замыкания
  • нагрузочный режим (согласованный)
  • режим холостого хода.

Основное отличие между этими режимами — это уровень нагрузки на электрическую цепь. Стоит отметить, что электрическая цепь имеет еще один режим работы, называемый номинальным. При таком режиме все элементы цепи работают по оптимальным для них условиям. Эти условия указываются в паспортных данных заводом-изготовителем.

Согласованный (нагрузочный) режим работы

Любой приемник, подключенный к источнику электроэнергии в цепи, обладает определенным сопротивлением. Наглядным примером такого приёмника может быть электрическая лампочка. При наличии напряжения начинает действовать закон Ома. При этом электродвижущая сила источника тока складывается из суммы напряжения на внешних участках цепи и внутреннего сопротивления источника. Когда падает напряжение внешней цепи, это оказывает влияние на изменении напряжения на зажимах источника. А само падение напряжения зависит от сопротивления и силы тока. Иными словами, согласованный (нагрузочный) режим работы электрической цепи — это процесс передачи нагрузки, при котором мощность превышает номинальные показатели. Но использование такого режима нерационально, ведь при длительном превышении установленных заводом значений, приборы могут попросту прийти в негодность.

Режим работы холостого хода

В таком режиме работы электрическая цепь находится в незамкнутом состоянии. Попросту говоря, в цепи отсутствует электрический ток, следовательно, каждый элемент цепи не подключен к источнику тока. При таком положении падение напряжения во внутренней цепи равно нулю, а ЭДС источника равно напряжению на зажимах источника питания. Иными словами, при режиме холостого хода в цепи, не подключенной к электрическому току, отсутствует сопротивление нагрузки.

Режим короткого замыкания

Это тот режим работы, который смело можно назвать аварийным, т.к. обеспечение нормальной работы цепи при таком режиме становится невозможным, ведь ток короткого замыкания показывает высокие значения, которые превышают номинальные в несколько раз. Короткое замыкание появляется, когда происходит соединение двух разных точек электрической цепи, у которых отличается разница потенциалов. При таком положении цепи нарушается ее нормальная работа. При режиме короткого замыкания зажимы в источнике питания замыкаются проводником, сопротивление у которого равняется нулю. Зачастую такой режим возникает в тот момент, когда соединяются два провода, связывающие между собой источник питания и приёмник цепи. Их сопротивление, в основном, ничтожно мало, поэтому его можно приравнять к нулю. Из-за отсутствия сопротивления при режиме короткого замыкания ток превышает номинальные показатели в несколько раз. За счет этого источники питания и приёмники электрической цепи могут прийти в негодность. В ряде случаев это может возникнуть при неправильном обращении с электрическим оборудованием обслуживающего его персонала.

Номинальные величины источников и приемников. Режимы работы электрических цепей

Каждый приемник электрической энергии характеризуется номи­нальными величинами, которые приводятся в справочной литературе, на щитке, прикрепленном к корпусу и др.

К номинальным величинам приемников относят номинальное на­пряжение U н

мощность
Рн
и ток
I н
(например, на лампах накаливания имеется штамп, в котором указывается номинальное напряжение и мощ­ность).

В качестве номинальных величин аккумуляторов указываются на­пряжение и емкость (в ампер-часах), которая показывает, какое количество электричества может пройти через аккумулятор, пока его напряжение не снизится до некоторого минимального значения.

Электрические цепи могут работать в различных режимах.

Номинальный режим работы какого-либо элемента электрической цепи (источника, приемника) считается такой режим, в котором данный элемент работает при номинальных величинах.

Согласованным

называется режим, при котором мощность, отдавае­мая источником или потребляемая приемником, имеет максимальное зна­чение. Максимальные значения мощностей получаются при определенном соотношении (согласовании) параметров ЭЦ.

Под режимом холостого хода

(ХX) понимается такой режим, при котором через источник или приемник не протекает ток. При этом источ­ник не отдает энергию во внешнюю цепь, а приемник не потребляет ее.

Режимом короткого замыкания (КЗ)

называется режим, возни­кающий при соединении между собой без какого-либо сопротивления (на­коротко) зажимов источника или иных элементов электрической цепи, ме­жду которыми имеется напряжение.

Режим короткого замыкания может быть следствием нарушения изо­ляции, обрыва проводов, ошибки оператора при сборке электрической це­пи и др. При коротком замыкании могут возникнуть недопустимо большие токи, электрическая дуга, что может привести к тяжелым последствиям, поэтому режим короткого замыкания является аварийным.

Линейные однофазные электрические цепи синусоидального тока

3.1. Основные величины, характеризующие синусоидальные ток, напряжение и ЭДС

Этими основными величинами являются:

— мгновенное значение;

— амплитудное значение;

image048

Электрические трансформаторы

Общие сведения

Электрический трансформатор — электромагнитное устройство, пре­образующее напряжение и ток одного уровня в напряжение и ток другого уровня при неизменной частоте и малой потере мощности.

Генераторы электрических станций вырабатывают электрическую энергию при напряжении 6, 10, 15 кВ, так как на более высокие напряже­ния конструировать электрогенераторы сложно в связи с трудностью обес­печить хорошую изоляцию обмоток.

В то же время в линиях электропередачи применяют напряжения до 110, 220, 400, 500 кВ и более, чтобы уменьшить силу тока в линии, а зна­чит и сечение проводов, что позволяет резко снизить мощность потерь и стоимость линий электропередач.

Таким образом, необходимы повышающие трансформаторы,

уве­личивающие напряжение генераторов электрических станций до напряже­ния линий электропередач.

В местах же потребления электрической энергии, на производстве, в быту и так далее необходимы понижающие трансформаторы,

чтобы иметь напряжения 380, 220, 127 В и менее.

Электрические трансформаторы имеют высокий коэффициент по­лезного действия, доходящий до 99 % и высокую надежность, так как не содержат движущихся частей.

Изобрел электрический трансформатор в 1876 году П.Н. Яблочков, который в своих работах по электрическому освещению встретился с не­обходимостью обеспечить автономную работу нескольких светильников с разным напряжением от одного генератора.

В 1891 году М.О. Доливо-Добровольским была разработана конст­рукция первого трехфазного электрического трансформатора,

после че­го применение электротрансформатора стало резко возрастать.

Простейший однофазный электрический трансформатор (рисунок 6.1) состоит из двух обмоток, размещенных на ферромагнитном маг-нитопроводе, который набран из изолированных друг от друга листов электротехнической стали толщиной 0.3-0.5 мм, с целью уменьшения потерь на вихревые токи (потерь в стали) Рс.

Обмотка, подключаемая к источнику электрической энергии (генератору) или к линии электропередач (электрической сети) называется первичной (входной).

Обмотка, к которой подключается приемник электриче­ской энергии —
вторичной (выходной).
Обе части асинхронного двигателя собираются из листов электро­технической стали толщиной 0,5 мм. Эти листы для уменьшения потерь на вихревые токи изолированы друг от друга слоем лака.

Неподвижная часть машины называется статором,

а вращающаяся
-ротором
(от латинского
stare
— стоять и
rotate
— вращаться).

image149

а) б)

1 — статор; 2 — ротор; 3 — вал; 4 — витки обмотки статора; 5 — витки обмотки ротора.

Рисунок 7.5 — Схема устройства асинхронного двигателя: попереч­ный разрез (а); обмотка ротора (б).

В пазах с внутренней стороны статора уложена трехфазная обмотка, токи которой возбуждают вращающееся магнитное поле машины. В пазах ротора размещена вторая обмотка, токи в которой индуктируются вра­щающимся магнитным полем.

Магнитопровод статора заключен в массивный корпус, являющийся внешней частью машины, а магнитопровод ротора укреплен на валу.

Роторы асинхронных двигателей изготавливаются двух видов: ко-роткозамкнутые и с контактными кольцами. Первые из них проще по уст­ройству и чаще применяются.

Обмотка короткозамкнутого ротора представляет собой цилиндриче­скую клетку («беличье колесо») из медных шин или алюминиевых стерж­ней, замкнутых накоротко на торцах двумя кольцами (рисунок 7.5,6). Стержни этой обмотки вставляются без изоляции в пазы магнитопровода.

Применяется также способ заливки пазов магнитопровода ротора расплавленным алюминием с одновременной отливкой и замыкающих ко­лец.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

Также читайте: Что такое приведённый трансформатор

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

poteri hh4

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

Также читайте: Что такое коэффициент абсорбции трансформатора

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

2 119

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Также читайте: СИЗ — средства индивидуальной защиты для электрика

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Видео: измерение тока холостого хода

Номинальный режим работы электрической цепи

Предмет
Электроника, электротехника, радиотехника

Разместил

🤓 anamythan1978

👍 Проверено Автор24

режим, при котором элементы электрической цепи работают в условиях соответствующих данным их проектирования.

Научные статьи на тему «Номинальный режим работы электрической цепи»

Электрооборудование

Аппараты защиты используются для коммутации электрических цепей, а также защиты электрических сетей и…
Надежность
Существуют три основных режима работы электрического оборудования — номинальный, нормальный…
Номинальный режим работы представляет собой такой режим, при котором составляющие электрической цепи
Нормальным режимом работы является такой режим, параметры которого отличаются от номинального незначительно…
При аварийном режиме работы электрооборудования параметры тока, напряжения и мощности превышают номинальные

Автор24

Статья от экспертов

POWERFUL HIGH-CURRENT GENERATOR OF MICROSECOND VOLTAGE PULSES WITH VOLTAGE AMPLITUDE UP TO ±2 MV AND CURRENT AMPLITUDE UP TO ±150 KA WITH ELECTRIC ENERGY STORED IN CAPACITORS UP TO 1 MJ

Purpose. Development and evaluation, on the basis of existing ultra-high-voltage generator of pulsed voltages and currents of GINT-4 type, of the new scheme of design of its charging-discharging circuit (CDC), and creation of modernized powerful ultrahighvoltage high-current generator of GINT-2 type to form microsecond voltage pulses with amplitudes up to ±2 MV and current with amplitude up to ±150 kA in the electrical load, with electrical energy stored in its capacitive energy storage (CES) up to 1 MJ. Methodology. Fundamentals of theoretical and applied electrical engineering, electrical power engineering, electrophysical principles of high-voltage and high pulsed current engineering, fundamentals of electromagnetic compatibility (EMC), instrument engineering, high-voltage instrumentation and standardization. Results. The new scheme of design of CDC of the modernized powerful ultra-high-voltage, heavy-current generator of GINT-2 type of outdoor placement, that allows obtaining, w…

Расчет асинхронного двигателя

Существуют четыре основных режима работы асинхронного двигателя:

режим холостого хода,
режим противовключения…
,
генераторный режим,
двигательный режим….
Двигательный режим работы характеризуется изменением частоты вращения электродвигателя от точки пуска…
Режим холостого хода электрического двигателя возникает в том случае, если на валу отсутствует нагрузка…
Далее рассчитывается индуктивность цепи намагничивания асинхронного двигателя в номинальном режиме:
Рисунок

Автор24

Статья от экспертов

МОЩНЫЙ СИЛЬНОТОЧНЫЙ ГЕНЕРАТОР МИКРОСЕКУНДНЫХ ИМПУЛЬСОВ НАПРЯЖЕНИЯ АМПЛИТУДОЙ ДО ±2 МВ И ТОКА АМПЛИТУДОЙ ДО ±150 КА С ЗАПАСАЕМОЙ В КОНДЕНСАТОРАХ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИЕЙ ДО 1 МДЖ

Предложена и апробирована новая схема построения мощного сверхвысоковольтного сильноточного генератора импульсных напряжений и токов ГИНТ-2 наружной установки, формирующего на активно-индуктивной нагрузке микросекундные импульсы напряжения амплитудой до ±2 МВ и тока амплитудой до ±150 кА при запасаемой электрической энергии до 1 МДж. Данный генератор построен на основе размещенного в полевых условиях модернизированного стационарного генератора ГИНТ-4 на номинальное напряжение ±4 МВ и номинальный ток амплитудой ±75 кА с запасаемой в его высоковольтных конденсаторах электрической энергией номинальным значением 1 МДж. Приведены описания схемных и конструктивных решений генератора ГИНТ-2, позволяющих обеспечить при сохранении основной электротехнической элементной базы генератора ГИНТ-4 получение на длинном разрядном воздушном промежутке двухэлектродной системы «игла-плоскость» импульсов тока микросекундной длительности с удвоенной амплитудой по сравнению с параметрами импульсов тока, ф…

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных
    карточек

Понравилась статья? Поделить с друзьями:
  • Как сделать успешный бизнес на ритуальных услугах
  • Выездной кейтеринг в России
  • Какой режим работы четырехполюсника называется согласованным
  • Какой режим работы цепи называется резонансом токов
  • Какой режим работы холодильника считается нормальным