Рис. 1.8. Режим
холостого хода
В режиме холостого
хода внешняя цепь разомкнута (рис. 1.8.)
При этом ее сопротивление равно
бесконечности, а величина тока в цепи
равна нулю. Следовательно, напряжение
на зажимах генератора: Uxx=
E.
Короткое
замыкание возникает обычно в результате
повреждения изоляции соединительных
проводов. При этом зажимы генератора
оказываются замкнуты проводником с
ничтожно малым сопротивлением (рис.
1.9).
Рис. 1.9 Режим
короткого замыкания.
Практически
напряжение на зажимах генератора в
режиме короткого замыкания равно нулю,
и сопротивление цепи равно внутреннему
сопротивлению генератора R0.
Так как R0
обычно мало, величина тока короткого
замыкания Iкз=
оказывается очень большой.
Короткое замыкание
является аварийным режимом работы и
представляет собой большую опасность
для электрических установок, т.к. может
повлечь за собой их разрушение, вследствие
перегрева, вызванного большими токами.
1.7. Расчет сложных электрических цепей постоянного тока.
Приведем основные
понятия сложной цепи. Несколько
последовательно соединенных элементов
цепи, по которым проходит один и тот же
ток, образуют ветвь. В общем случае ветвь
может содержать как сопротивления, так
и ЭДС.
Точка соединения
трех и более ветвей называют узловой
точкой или узлом.
Несколько
ветвей, образующих замкнутую электрическую
цепь называют контуром.
1.7.1. Метод непосредственного применения законов Кирхгофа
Универсальным
методом расчета токов в сложных цепях
постоянного тока с несколькими источниками
электрической энергии, является метод
непосредственного применения I
и II
законов Кирхгофа.
К узловым точкам
схемы применяется I
закон Кирхгофа, согласно которому сумма
токов, притекающих к узлу равна сумме
токов уходящих от него, т.е. алгебраическая
сумма токов в узле равна нулю. ∑I
=0
К контурам
применяется II
закон Кирхгофа, согласно которому
алгебраическая сумма ЭДС, действующих
в контуре, равна сумме падений напряжений
на всех сопротивлениях контура.
∑E
= ∑IR
По первому и
второму законам Кирхгофа составляют
столько уравнений, сколько неизвестных
токов в цепи. По первому закону Кирхгофа
составляют n-1
уравнений, где n
– число узлов в цепи. Недостающие
уравнения составляют по второму закону
Кирхгофа.
Рассмотрим
применение метода на примере сложной
электрической цепи, схема которой
представлена на рис. 1.10
Рис. 1.10. Сложная
электрическая цепь постоянного тока.
Расчет токов,
протекающих в ветвях сложной цепи,
проводят по следующим правилам:
-
По возможности
упрощают схему, заменяя параллельно
соединенные сопротивления одним
эквивалентным. Для рассматриваемой
схемы имеем
R567
=
-
Определяют
количество искомых токов в цепи и
произвольно задают их направления.
Количество искомых токов равно
количеству ветвей в цепи. В рассматриваемой
цепи после упрощения остается три
ветви abcd,
ad,
afed,
следовательно, требуется найти значения
трех токов I1,
I2,
I3,
для чего
необходимо составить три уравнения по
законам Кирхгофа.
-
Определяют
количество узлов в цепи и для всех
узловых точек, кроме одной составляют
уравнения по первому закону Кирхгофа.
В рассматриваемой цепи две узловые
точки a
и d.
Поэтому, по первому закону Кирхгофа
составляется одно уравнение для узловой
точки a,
в соответствии с заданными направлениями
токов
I1
+
I2
= I3
(1.11)
-
Выбирают произвольное
направление обхода контуров по или
против часовой стрелки и по второму
закону Кирхгофа составляют недостающие
уравнения. Для рассматриваемой цепи
необходимо составить еще два уравнения.
Они составляются по второму закону
Кирхгофа, для контуров adef
и abcd
в соответствии с выбранными направлениями
их обхода. При этом ЭДС и токи, совпадающие
с направлением обхода контура, принимают
со знаком плюс, а ЭДС и токи, противоположные
этому направлению, со знаком минус. В
результате получаем
E1
= I1
(R1+R2+R3)
+ I3R8
(1.12)
E2
= I2
(R567+R4)
+ I3R8
(1.13)
5. Определяют
неизвестные токи в ветвях, решая
полученную систему уравнений (1.11),
(1.12), (1.13). Если какие-то значения при
расчете получаются со знаком минус, то
это означает, что направления реальных
токов противоположны заданным в начале
расчета.
Проверку решения
задачи осуществляют путем расчета
уравнения баланса мощностей: алгебраическая
сумма мощностей развиваемых всеми
источниками ЭДС равна сумме мощностей,
потребляемых всеми сопротивлениями
нагрузки. В общем виде уравнение баланса
мощностей записывается как ∑EI=∑I2R.
Применительно
к рассматриваемой цепи, уравнение
баланса мощностей принимает вид:
E1I1+E2I2
= I(R1+R2+R3)
+ I(R4+R567)
+IR8
(1.14)
Если направление
ЭДС совпадает с направлением тока в
ветви, то их произведение включается в
левую часть уравнения со знаком плюс,
а если не
совпадает,
то со знаком минус, т.е.E
I
(+) и EI
(-). Если расчет токов проведен
правильно, то левая часть уравнения
(1.14) равна его правой части.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
Для электрической цепи наиболее характерными являются режимы работы: нагрузочный, холостого хода и короткого замыкания.
Нагрузочный режим работы (рис. 19, а).
Рис. 19. Схемы, поясняющие нагрузочный режим работы (а) и режим холостого хода (б)
Рассмотрим работу электрической цепи при подключении к источнику какого-либо приемника с сопротивлением R (резистора, электрической лампы и т. п.).
На основании закона Ома э. д. с. источника равна сумме напряжений IR на внешнем участке цепи и IRo на внутреннем сопротивлении источника:
E = IR + IR0 (12)
Учитывая, что напряжение Uи на зажимах источника равно падению напряжения IR во внешней цепи, получим:
E = Uи+IR0 (13)
Эта формула показывает, что э. д. с. источника больше напряжения на его зажимах на значение падения напряжения внутри источника. Падение напряжения IRo внутри источника зависит от тока в цепи I (тока нагрузки), который определяется сопротивлением R приемника. Чем больше будет ток нагрузки, тем меньше напряжение на зажимах источника:
Uи = E – IR0 (13′)
Падение напряжения в источнике зависит также и от внутреннего сопротивления Ro. Согласно уравнению (13′) зависимость напряжения Uи от тока I изображается прямой линией (рис. 20). Эту зависимость называют внешней характеристикой источника.
Рис. 20. Внешняя характеристика источника
Из всех возможных нагрузочных режимов работы наиболее важным является номинальный. Номинальным называется режим работы, установленный заводом-изготовителем для данного электротехнического устройства в соответствии с предъявляемыми к нему техническими требованиями.
Он характеризуется номинальными напряжением, током (точка Н на рис. 20) и мощностью. Эти величины обычно указывают в паспорте данного устройства.
От номинального напряжения зависит качество электрической изоляции электротехнических установок, а от номинального тока — температура их нагрева, которая определяет площадь поперечного сечения проводников, теплостойкость применяемой изоляции и интенсивность охлаждения установки. Превышение номинального тока в течение длительного времени может привести к выходу из строя установки.
Режим холостого хода (рис. 19, б).
Рис. 19. Схемы, поясняющие нагрузочный режим работы (а) и режим холостого хода (б)
При этом режиме присоединенная к источнику электрическая цепь разомкнута, т. е. тока в цепи нет. В этом случае внутреннее падение напряжения IRo будет равно нулю и формула (13) примет вид
E = Uи (14)
Таким образом, в режиме холостого хода напряжение на зажимах источника электрической энергии равно его э. д. с. (точка X на рис. 20). Это обстоятельство можно использовать для измерения э. д. с. источников электроэнергии.
Режим короткого замыкания (рис. 21).
Рис. 21. Схема короткого замыкания в цепи источника электрической энергии
Коротким замыканием (к. з.) называют такой режим работы источника, когда его зажимы замкнуты проводником, сопротивление которого можно считать равным нулю. Практически к. з. возникает при соединении друг с другом проводов, связывающих источник с приемником, так как эти провода имеют обычно незначительное сопротивление и его можно принять равным нулю.
К. з. может происходить в результате неправильных действий персонала, обслуживающего электротехнические установки (рис. 22, а), или при повреждении изоляции проводов (рис. 22,б, в); в последнем случае эти провода могут соединяться через землю, имеющую весьма малое сопротивление, или через окружающие металлические детали (корпуса электрических машин и аппаратов, элементы кузова локомотива и пр.).
Рис. 22. Возможные причины короткого замыкания в электрических установках
При коротком замыкании ток
Iк.з = E / R0 (15)
Ввиду того что внутреннее сопротивление источника Ro обычно очень мало, проходящий через него ток возрастает до весьма больших значений. Напряжение же в месте к. з. становится равным нулю (точка К на рис. 20), т. е. электрическая энергия на участок электрической цепи, расположенный за местом к. з., поступать не будет.
Короткое замыкание является аварийным режимом, так как возникающий при этом большой ток может привести в негодность как сам источник, так и включенные в цепь приборы, аппараты и провода. Лишь для некоторых специальных генераторов, например сварочных, короткое замыкание не представляет опасности и является рабочим режимом.
В электрической цепи ток проходит всегда от точек цепи, находящихся под большим потенциалом, к точкам, находящимся под меньшим потенциалом. Если какая-либо точка цепи соединена с землей, то потенциал ее принимается равным нулю. В этом случае потенциалы всех других точек цепи будут равны напряжениям, действующим между этими точками и землей.По мере приближения к заземленной точке уменьшаются потенциалы различных точек цепи, т. е. напряжения, действующие между этими точками и землей.
По этой причине обмотки возбуждения тяговых двигателей и вспомогательных машин, в которых при резких изменениях тока могут возникать большие перенапряжения, стараются включать в силовую цепь ближе к «земле» (за обмоткой якоря). В этом случае на изоляцию этих обмоток будет действовать меньшее напряжение, чем если бы они были включены ближе к контактной сети на электровозах постоянного тока или к незаземленному полюсу выпрямительной установки на электровозах переменного тока (т.е. находились бы под более высоким потенциалом).
Точно также точки электрической цепи, находящиеся под более высоким потенциалом, являются более опасными для человека, соприкасающегося с токоведущими частями электрических установок. При этом он попадает под более высокое напряжение по отношению к земле.
Следует отметить, что при заземлении одной точки электрической цепи распределение токов в ней не изменяется, так как при этом образуется никаких новых ветвей, по которым могли бы протекать токи. Если заземлить две (или больше) точки цепи, имеющие разные потенциалы, то через землю образуются дополнительная токопроводящая ветвь (или ветви) и распределение тока в цепи меняется.
Следовательно, нарушение или пробой изоляции электрической установки, одна из точек которой заземлена, создает контур, по которому проходит ток, представляющий собой, по сути дела, ток короткого замыкания. То же происходит в незаземленной электрической установке при замыкании на землю двух ее точек. При разрыве электрической цепи все ее точки до места разрыва оказываются под одним и тем же потенциалом.
Режим холосто́го хо́да в электронике — состояние четырехполюсника, при котором к его выводам не подключено никакой нагрузки (то есть, другими словами, сопротивление нагрузки бесконечно). Часто вместо термина Режим холостого хода используется аббревиатура: Режим ХХ или просто ХХ.
Какой режим работы называется режимом короткого замыкания?
Режим короткого замыкания. Коротким замыканием (к. з.) называют такой режим работы источника, когда его зажимы замкнуты проводником, сопротивление которого можно считать равным нулю.
Что называется номинальным режимом работы?
Режим работы, при котором действительные токи, напряжения, мощности элементов электрической цепи соответствуют их номинальным значениям, называется номинальным (нормальным). Рабочий режим.
Что называют режимом короткого замыкания?
Режим коро́ткого замыка́ния в электротехнике — состояние двухполюсника, при котором его выводы соединены проводником с нулевым сопротивлением (то есть, другими словами, замкнуты, закорочены, соединены накоротко, соединены коротким соединением).
Какой режим работы электрической цепи называется режимом холостого хода?
Режим холосто́го хо́да в электронике — состояние четырехполюсника, при котором к его выводам не подключено никакой нагрузки (то есть, другими словами, сопротивление нагрузки бесконечно). Часто вместо термина Режим холостого хода используется аббревиатура: Режим ХХ или просто ХХ.
Какой режим работы электрической цепи является опасным для жизни человека?
Режим короткого замыкания.
Этот режим работы считается аварийным, электрическая цепь не может работать нормально. Короткое замыкание возникает при соединении двух различных точек цепи, разница потенциалов которых отличается. Такое состояние не предусмотрено изготовителем устройства и нарушает его нормальную работу.
Чему равно эдс в режиме холостого хода?
Режим холостого хода.
Т. е., т. к. отсутствует ток цепи, то падение напряжения в источнике ЭДС равно нулю и напряжение на его зажимах будет равно напряжению источника ЭДС.
Какое определение подходит для номинального режима работы?
Номинальный режим (продолжительный режим) — такой режим работы машин и оборудования, при котором они могут наиболее эффективно работать на протяжении неограниченного времени (более нескольких часов).
Что называется импедансом?
impedance от лат. impedio «препятствовать») — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала. Это понятие и термин ввёл физик и математик О. Хевисайд в 1886 году.
Что такое согласованный режим?
Согласованный режим – это режим, когда в нагрузке выделяется максимальная мощность.
Где в технике используется режим согласованной нагрузки и почему?
Этот режим используют в информационных цепях, где мощности могут быть малыми, и решающими являются не соображения экономичности передачи сигнала, а максимальная мощность сигнала в нагрузке.
Какое устройство используют для предотвращения короткого замыкания?
— Необходимо использовать электропредохранитель, с соответствующей для вашего потребления мощностью. Если предохранитель часто отключается, то возможно где-то есть неполадки в соединениях проводов или вы потребляете большее количество электроэнергии, чем рассчитан ваш предохранитель.
Что нужно сделать для предотвращения короткого замыкания?
Короткое замыкание. Причины возникновения и как его избежать
- Не использовать старые провода с несоответствующей изоляцией.
- Быть внимательным при проведении электромонтажных работ. …
- Снимать изоляцию при монтаже крайне аккуратно, не резать провод ножом вдоль жил.
- Следить за тем, чтобы сеть была отключена при работах с ней.
Для чего считают токи короткого замыкания?
Расчеты токов КЗ производятся для выбора или проверки параметров электрооборудования, а также для проверки уставок релейной защиты и автоматики. Основная цель расчета состоит в определении периодической составляющей тока КЗ для наиболее тяжелого режима работы сети.
Совокупность объектов и устройств, обеспечивающих постоянный и непрерывный путь для движения электрического тока можно назвать электрической цепью.
Напряжение и сила тока — это неотъемлемые элементы каждой электрической цепи. Такие явления, наряду с прочими магнитными и электрическими явлениями, изучает наука, называемая электротехникой. Еще одной целью этой науки является поиск возможности практических применений, а не только теоретического изучения.
Если учесть, что в электрической цепи имеются разные элементы, то можно сказать, что существует несколько режимов работы цепи. Эти элементы подразделены на три основных вида — это источники энергии, проводники и приёмники, т.е. первые элементы служат для выработки электроэнергии, приёмники преобразуют электроэнергию в другие ее виды, а проводники передают энергию от источников к приёмникам. Все элементы цепи — источники тока, проводники и приёмники — это устройства, без которых невозможно существование электрической цепи. При отсутствии одного из этих элементов работа цепи просто невозможна. В зависимости от того какое строение и какие элементы в цепи содержатся, все электрические цепи бывают линейные и нелинейные. При этом каждую цепь можно изобразить в схеме, что позволяет сделать работу с цепями более удобной.
Выделяют три режима работы цепи:
- короткого замыкания
- нагрузочный режим (согласованный)
- режим холостого хода.
Основное отличие между этими режимами — это уровень нагрузки на электрическую цепь. Стоит отметить, что электрическая цепь имеет еще один режим работы, называемый номинальным. При таком режиме все элементы цепи работают по оптимальным для них условиям. Эти условия указываются в паспортных данных заводом-изготовителем.
Согласованный (нагрузочный) режим работы
Любой приемник, подключенный к источнику электроэнергии в цепи, обладает определенным сопротивлением. Наглядным примером такого приёмника может быть электрическая лампочка. При наличии напряжения начинает действовать закон Ома. При этом электродвижущая сила источника тока складывается из суммы напряжения на внешних участках цепи и внутреннего сопротивления источника. Когда падает напряжение внешней цепи, это оказывает влияние на изменении напряжения на зажимах источника. А само падение напряжения зависит от сопротивления и силы тока. Иными словами, согласованный (нагрузочный) режим работы электрической цепи — это процесс передачи нагрузки, при котором мощность превышает номинальные показатели. Но использование такого режима нерационально, ведь при длительном превышении установленных заводом значений, приборы могут попросту прийти в негодность.
Режим работы холостого хода
В таком режиме работы электрическая цепь находится в незамкнутом состоянии. Попросту говоря, в цепи отсутствует электрический ток, следовательно, каждый элемент цепи не подключен к источнику тока. При таком положении падение напряжения во внутренней цепи равно нулю, а ЭДС источника равно напряжению на зажимах источника питания. Иными словами, при режиме холостого хода в цепи, не подключенной к электрическому току, отсутствует сопротивление нагрузки.
Режим короткого замыкания
Это тот режим работы, который смело можно назвать аварийным, т.к. обеспечение нормальной работы цепи при таком режиме становится невозможным, ведь ток короткого замыкания показывает высокие значения, которые превышают номинальные в несколько раз. Короткое замыкание появляется, когда происходит соединение двух разных точек электрической цепи, у которых отличается разница потенциалов. При таком положении цепи нарушается ее нормальная работа. При режиме короткого замыкания зажимы в источнике питания замыкаются проводником, сопротивление у которого равняется нулю. Зачастую такой режим возникает в тот момент, когда соединяются два провода, связывающие между собой источник питания и приёмник цепи. Их сопротивление, в основном, ничтожно мало, поэтому его можно приравнять к нулю. Из-за отсутствия сопротивления при режиме короткого замыкания ток превышает номинальные показатели в несколько раз. За счет этого источники питания и приёмники электрической цепи могут прийти в негодность. В ряде случаев это может возникнуть при неправильном обращении с электрическим оборудованием обслуживающего его персонала.
Номинальные величины источников и приемников. Режимы работы электрических цепей
Каждый приемник электрической энергии характеризуется номинальными величинами, которые приводятся в справочной литературе, на щитке, прикрепленном к корпусу и др.
К номинальным величинам приемников относят номинальное напряжение U н
мощность
Рн
и ток
I н
(например, на лампах накаливания имеется штамп, в котором указывается номинальное напряжение и мощность).
В качестве номинальных величин аккумуляторов указываются напряжение и емкость (в ампер-часах), которая показывает, какое количество электричества может пройти через аккумулятор, пока его напряжение не снизится до некоторого минимального значения.
Электрические цепи могут работать в различных режимах.
Номинальный режим работы какого-либо элемента электрической цепи (источника, приемника) считается такой режим, в котором данный элемент работает при номинальных величинах.
Согласованным
называется режим, при котором мощность, отдаваемая источником или потребляемая приемником, имеет максимальное значение. Максимальные значения мощностей получаются при определенном соотношении (согласовании) параметров ЭЦ.
Под режимом холостого хода
(ХX) понимается такой режим, при котором через источник или приемник не протекает ток. При этом источник не отдает энергию во внешнюю цепь, а приемник не потребляет ее.
Режимом короткого замыкания (КЗ)
называется режим, возникающий при соединении между собой без какого-либо сопротивления (накоротко) зажимов источника или иных элементов электрической цепи, между которыми имеется напряжение.
Режим короткого замыкания может быть следствием нарушения изоляции, обрыва проводов, ошибки оператора при сборке электрической цепи и др. При коротком замыкании могут возникнуть недопустимо большие токи, электрическая дуга, что может привести к тяжелым последствиям, поэтому режим короткого замыкания является аварийным.
Линейные однофазные электрические цепи синусоидального тока
3.1. Основные величины, характеризующие синусоидальные ток, напряжение и ЭДС
Этими основными величинами являются:
— мгновенное значение;
— амплитудное значение;
Электрические трансформаторы
Общие сведения
Электрический трансформатор — электромагнитное устройство, преобразующее напряжение и ток одного уровня в напряжение и ток другого уровня при неизменной частоте и малой потере мощности.
Генераторы электрических станций вырабатывают электрическую энергию при напряжении 6, 10, 15 кВ, так как на более высокие напряжения конструировать электрогенераторы сложно в связи с трудностью обеспечить хорошую изоляцию обмоток.
В то же время в линиях электропередачи применяют напряжения до 110, 220, 400, 500 кВ и более, чтобы уменьшить силу тока в линии, а значит и сечение проводов, что позволяет резко снизить мощность потерь и стоимость линий электропередач.
Таким образом, необходимы повышающие трансформаторы,
увеличивающие напряжение генераторов электрических станций до напряжения линий электропередач.
В местах же потребления электрической энергии, на производстве, в быту и так далее необходимы понижающие трансформаторы,
чтобы иметь напряжения 380, 220, 127 В и менее.
Электрические трансформаторы имеют высокий коэффициент полезного действия, доходящий до 99 % и высокую надежность, так как не содержат движущихся частей.
Изобрел электрический трансформатор в 1876 году П.Н. Яблочков, который в своих работах по электрическому освещению встретился с необходимостью обеспечить автономную работу нескольких светильников с разным напряжением от одного генератора.
В 1891 году М.О. Доливо-Добровольским была разработана конструкция первого трехфазного электрического трансформатора,
после чего применение электротрансформатора стало резко возрастать.
Простейший однофазный электрический трансформатор (рисунок 6.1) состоит из двух обмоток, размещенных на ферромагнитном маг-нитопроводе, который набран из изолированных друг от друга листов электротехнической стали толщиной 0.3-0.5 мм, с целью уменьшения потерь на вихревые токи (потерь в стали) Рс.
Обмотка, подключаемая к источнику электрической энергии (генератору) или к линии электропередач (электрической сети) называется первичной (входной).
Обмотка, к которой подключается приемник электрической энергии —
вторичной (выходной).
Обе части асинхронного двигателя собираются из листов электротехнической стали толщиной 0,5 мм. Эти листы для уменьшения потерь на вихревые токи изолированы друг от друга слоем лака.
Неподвижная часть машины называется статором,
а вращающаяся
-ротором
(от латинского
stare
— стоять и
rotate
— вращаться).
а) б)
1 — статор; 2 — ротор; 3 — вал; 4 — витки обмотки статора; 5 — витки обмотки ротора.
Рисунок 7.5 — Схема устройства асинхронного двигателя: поперечный разрез (а); обмотка ротора (б).
В пазах с внутренней стороны статора уложена трехфазная обмотка, токи которой возбуждают вращающееся магнитное поле машины. В пазах ротора размещена вторая обмотка, токи в которой индуктируются вращающимся магнитным полем.
Магнитопровод статора заключен в массивный корпус, являющийся внешней частью машины, а магнитопровод ротора укреплен на валу.
Роторы асинхронных двигателей изготавливаются двух видов: ко-роткозамкнутые и с контактными кольцами. Первые из них проще по устройству и чаще применяются.
Обмотка короткозамкнутого ротора представляет собой цилиндрическую клетку («беличье колесо») из медных шин или алюминиевых стержней, замкнутых накоротко на торцах двумя кольцами (рисунок 7.5,6). Стержни этой обмотки вставляются без изоляции в пазы магнитопровода.
Применяется также способ заливки пазов магнитопровода ротора расплавленным алюминием с одновременной отливкой и замыкающих колец.
Как проводится опыт холостого хода
При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:
- коэффициент трансформации;
- мощность потерь в стали;
- параметры намагничивающей ветви в замещающей схеме.
Для опыта на устройство подаётся номинальная нагрузка.
Также читайте: Что такое приведённый трансформатор
При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.
В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.
Далее приведены особенности расчёта характеристик для различных видов трансформаторов.
Для однофазного трансформатора
Опыт холостого хода для однофазного трансформатора проводится с подключением:
- вольтметров на первичной и вторичной катушках;
- ваттметра на первичной обмотке;
- амперметра на входе.
Приборы подключаются по следующей схеме:
Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:
Iо% = I0×100/I10.
Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.
Коэффициент рассчитывается по формуле:
K = w1/w2 = U1н/ U2О.
Величина потерь составляет сумму из электрической и магнитной составляющих:
P0 = I02×r1 + I02×r0.
Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.
Для трёхфазного трансформатора
Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.
Также читайте: Что такое коэффициент абсорбции трансформатора
При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.
Применяется следующая схема:
Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.
В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.
Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.
Для сварочного трансформатора
Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.
После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.
Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.
Также читайте: СИЗ — средства индивидуальной защиты для электрика
Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.
Видео: измерение тока холостого хода
1.6. Режимы работы электрических цепей.
Как указывалось выше, любая электрическая цепь состоит из источников и нагрузок (приемников). При включении различного количества приемников с изменением их параметров будут изменяться напряжения, токи и мощности в электрической цепи, от значений которых зависит режим работы цепи и ее элементов. Наиболее характерными являются следующие режимы: номинальный, согласованный, холостого хода и короткого замыкания.
Номинальным называется режим, при котором приемник работает со значениями тока, напряжения и мощности, на которые он рассчитан и которые называются его номинальными (или техническими) данными. Номинальные мощности и токи многих элементов электрических цепей (двигателей, генераторов, резисторов и др.) устанавливаются, исходя из нагревания их до наибольшей допускаемой температуры. Номинальные данные указываются в справочной литературе, технической документации или на самом элементе.
С учетом номинальных напряжений и токов источников и приемников производится выбор проводов и других элементов электрических цепей.
Согласованным называется режим, при котором мощность, отдаваемая источником или потребляемая приемником, достигает максимального значения. Это возможно при определенном соотношении (согласовании) параметров электрической цепи, откуда и вытекает название данного режима.
Под режимом холостого хода понимается такой режим, при котором приемник отключен от источника. При этом источник не отдает энергию во внешнюю цепь, а приемник не потребляет ее.
Режимом короткого замыкания называется режим, возникающий при соединении между собой выводов источника, приемника или соединительных проводов, а также иных элементов электрической цепи, между которыми имеется напряжение. При этом сопротивление в месте соединения оказывается практически равным нулю. При коротких замыканиях могут возникать недопустимо большие токи, электрическая дуга, возможно резкое снижение напряжения, поэтому режим короткого замыкания рассматривают, как аварийный.
Энергетические установки работают чаще всего в режиме, при котором токи и мощности не превышают номинальных значений, а напряжения близки к номинальным.
Рассмотрим простейшую неразветвленную цепь (рис. 1.14, а). В этой цепи участок amb представляет собой простейший пассивный двухполюсник, являющийся приемником, участок anb — простейший активный двухполюсник, являющийся источником.
Рекомендуемые материалы
Для рассматриваемой цепи по второму закону Кирхгофа можно написать:
(1.16)
Формула для определения соотношения между напряжением U и э.д.с. источника E, полученная из (1.16),
(1.17)
называется внешней характеристикой источника, которая связывает напряжения на зажимах источника с величиной тока через источник (рис. 1.14б).
Очевидно, что напряжение на зажимах источника U тем больше, чем меньше его внутреннее сопротивление при одном и том же токе через источник.
В идеальном источнике напряжения r0=0, U=E во всем диапазоне изменения тока (рис. 1.14, б кривая 2).
Если умножить (1.16) на ток I , то получим соотношение между мощностями
(1.18)
Произведение EI представляет собой мощность, вырабатываемую источником. Правая часть (1.18) содержит потери мощности во внутреннем сопротивлении источника I2r0, и мощность, потребляемую приемником I2r. Если из вырабатываемой мощности вычесть потери мощности во внутреннем сопротивлении источника, получим мощность UI, отдаваемую источником во внешнюю цепь
(1.19)
Мощность, отдаваемая источником в данной цепи, равна мощности, потребляемой приемником
(1.20)
Вырабатываемая источником мощность определяется произведением:
(1.21)
причем положительные направления э.д.с. и тока совпадают. Отдаваемая им мощность:
(1.22)
где направления напряжения и тока противоположны, а мощность, потребляемая приемником определяется произведением:
(1.23)
где положительные направления тока и напряжения совпадают. Такие взаимные направления тока и э.д.с., а также тока и напряжения характерны для источников и приемников в любых электрических цепях (рис. 1.15 а,б).
Отношение мощности, отдаваемой источником, к вырабатываемой им мощности называется
коэффициентом полезного действия (КПД)
источника
Рис 1.15
(1.24)
Пользуясь полученными соотношениями, установим, как будут меняться значения тока, напряжения, мощности при изменении сопротивления r, т.е. в различных режимах работы источника. При отключении источника с помощью выключателя В (рис. 1.14а) электрическая цепь будет работать в режиме холостого хода. В этом случае следует считать r равным бесконечности, при этом I=E/(r+ r0)=0. Вследствие чего оказываются равными нулю падение напряжения Ir0, потери мощности I2r и мощности EI и UI. Т.к. Ir0=0, то согласно (1.17) U=Ux=E. Уменьшение сопротивления r приводит к увеличению тока I, падения напряжения Ir0, мощности EI. Напряжение U при этом уменьшается. О характере изменения мощности приемника можно судить, анализируя выражение
(1.25)
Зависимость
Обратите внимание на лекцию «47. Федеральный надзор и контроль в области безопасности».
представлена на рис. 1.16.
Уменьшение сопротивления r , а значит увеличение тока I приводит к возрастанию Рпотр и при r=r0 Рпотр =Рmax , что соответствует режиму согласованной нагрузки. В согласованном режиме U=0.5E, Рпотр=0.5, Рвыр, η=0.5. Дальнейшее уменьшение r приводит к уменьшению Рпотр.
Для номинального режима работы характерно следующее соотношение сопротивлений r >> r0, что обеспечивает поступление основной части вырабатываемой мощности к приемнику. При этом к.п.д. принимает значения, близкие к 1 , Uном=Iномr>>Iномr0 и согласно (1.17) U близко к E.
В режиме короткого замыкания r=0 и ток короткого замыкания оказывается намного больше номинального тока: Iк=E/r0>>Iном
При коротком замыкании U=IKr=0, Рпотр=UIK=0. Мощность Рвыр=EIK значительно возрастает и преобразуется в теплоту в сопротивлении r0. Последнее может привести с выходу из строя изоляции и даже к перегоранию проводов.
На внешней характеристике источника рис.1.14, б, которая подчиняется уравнению (1.17) и представляет собой прямую при E=const и ro= const, указаны точки, соответствующие режимам холостого хода, короткого замыкания и номинальному режиму работы источника. Здесь же приведена внешняя характеристика идеального источника э.д.с. (кривая 2 на рис. 1.14, б),для которого r0=0,U=E=const.
Почему режим холостого хода недопустим при работе трансформатора?
Важно отметить, что при режиме холостого хода значительно снижается сosφ электрических цепей, а, следовательно, этот режим является недопустимым при эксплуатации трансформаторов.
Почему для трансформатора тока опасен режим холостого хода?
Режим холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой; … Данный режим опасен для трансформатора, т. к. в этом случае ток во вторичной обмотке максимален и происходит электрическая и тепловая перегрузка системы.
Какой режим работы соответствует опыту холостого хода трансформатора?
Для определения параметров схемы замещения однофазного трансформатора используют опыт холостого хода. Холостым ходом трансформатора называют режим работы, когда нагрузка на вторичной обмотке отсутствует, то есть Zн= ∞. При этом полезная мощность трансформатора равна нулю, так как ток во вторичной обмотке отсутствует.
Чем опасен режим холостого хода измерительного трансформатора тока?
При использовании ТТ необходимо соблюдать основное и главное правило: вторичная цепь трансформатора тока не должна работать в режиме холостого хода, ввиду индуцирования очень большой, опасной для жизни ЭДС (до нескольких киловольт). … В последнем случае есть вероятность поражения током обслуживающего персонала.
В чем сущность режима холостого хода и рабочего режима трансформатора?
Режимом холостого хода трансформатора называют режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и при разомкнутых цепях других обмоток. … В каждой из них возникают эдс: в первичной обмотке — эдс самоиндукции Е1, во вторичной обмотке — эдс взаимоиндукции Е2.
Чем опасен режим холостого хода?
В ходе работы на холостом ходу на свечах зажигания образуется много нагара, и сажа снижает эффективность работы свечей, что влечет падение мощности мотора. Из-за низких оборотов не может до конца сгореть бензин, и в таком режиме может страдать каталитический нейтрализатор.
Чем опасен режим короткого замыкания трансформатора?
Опасность короткого замыкания
При большой мощности источника ток достигнет очень большой величины, который может повредить источник, потребитель, соединительные провода. Перегрев соединительных проводов может привести к пожару.
Что называется опытом холостого хода трансформатора?
Опыт холостого хода трансформатора проводят для определения коэффициента трансформации, мощности потерь в стали и параметров намагничивающей ветви схемы замещения, проводят его обычно при номинальном напряжении первичной обмотки.
Для чего делается Опыт холостого хода и короткого замыкания трансформаторов?
Цель опытов. Опыты холостого хода и короткого замыкания проводятся для определения коэффициента трансформации, потерь в трансформаторе и параметров схемы замещения.
Что означает холостой ход при каком условии он возникает?
В технике холостой ход используется в случае, когда невозможно по каким-либо причинам выключать двигатель при отсутствии необходимости в передаче энергии. … Для отключения нагрузки двигатель отсоединяется от потребителя с помощью специальных механических устройств.
Какой ток поступает на трансформатор?
Как работает трансформатор
Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 .
Какой режим работы трансформатора называется номинальным?
Номинальный и оптимальный режим
Номинальный режим – это когда ток и напряжение на первичной обмотке соответствуют номинальным показателям. Но на деле трансформатор редко работает в таких условиях. Потому что в сети происходят постоянные колебания нагрузки. При таком режиме трансформатор работает исправно.
Какой из режимов работы трансформатора является аварийным?
Аварийный режим работы трансформатора – внештатный режим работы силового трансформатора, при котором возможно возникновение дефектов или выход его из строя. В зависимости от характера возникновения различают несколько разновидностей работы трансформатора в аварийном режиме.
В чем состоит режим холостого хода трансформатора?
Режим, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение, называется холостым ходом трансформатора. Если к первичной обмотке подвести напряжение U1 по ней потечет ток, который обозначим I0. Этот ток создает магнитный поток Ф.
В чем разница между трансформатором и Автотрансформатором?
У трансформатора каждая обмотка имеет минимум два собственных вывода, у автотрансформатора один вывод всегда окажется общим для первичной и вторичной обмоток. … У автотрансформаторов более высокий КПД, ибо преобразованию подвергается лишь часть магнитного потока. Да и в целом стоимость автотрансформатора получается ниже.
Что такое потери холостого хода трансформатора?
Потери холостого хода – это постоянная цифра, которая зависит от суммы намагничивающей и активной части. А эти величины неизменны, так как на них влияют характеристики обмотки и магнитного сердечника. По значению потерь холостого хода можно судить о работе трансформатора.
Источник
Что такое холостой ход трансформаторов, формулы и схемы
Трансформатор электрического тока является устройством преобразования энергии. Ток холостого хода трансформатора характеризует потери при отсутствии подключенной нагрузки. Величина данного параметра зависит от нескольких факторов:
- Конструктивного исполнения.
- Материала сердечника.
- Качества намотки.
При изготовлении преобразователей стремятся к максимально возможному снижению потерь холостого хода с целью повышения КПД, снижения нагрева, а также уменьшения паразитного поля магнитного рассеивания.
Общая конструкция и принцип работы трансформатора
Конструктивно трансформатор состоит из следующих основных частей:
- Замкнутый сердечник из ферромагнитного материала.
- Обмотки.
Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.
Принцип действия рассматриваемой конструкции заключается в следующем:
- При подключении первичной обмотки к источнику переменного напряжения она формирует переменное электромагнитное поле.
- Под воздействием данного поля в сердечнике формируется магнитное поля.
- Магнитное поле сердечника, в силу электромагнитной индукции, создает во всех обмотках ЭДС индукции.
ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.
Понятие холостого хода
Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:
- намагничивание сердечника;
- магнитное поле рассеивания сердечника;
- электромагнитное рассеивание обмотки;
- междувитковую емкость проводов обмотки.
В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода. При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.
Потери снижают общий КПД трансформатора, в результате чего растет потребление мощности.
Меры по снижению тока холостого хода
Основным источником возникновения тока холостого хода является конструкция магнитопровода. В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.
Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).
Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.
От указанных недостатков свободны О-образные магнитопроводы. Магнитное поле рассеивания у них стремится к нулю.
Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.
Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.
Как проводится опыт холостого хода
Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.
Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.
Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.
Коэффициент трансформации
Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:
Данное отношение справедливо для всех обмоток трансформатора.
Однофазные трансформаторы
В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.
Трехфазные
Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:
- амперметры для измерения тока в каждой фазе;
- вольтметры для измерения междуфазных напряжений первичной обмотки;
- вольтметры для измерения междуфазных напряжений вторичной обмотки.
При проведении опыта холостого хода производятся следующие вычисления:
- рассчитывается среднее значение тока по показаниям амперметра;
- среднее значение напряжения первичной и вторичной обмоток.
Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.
Измерение тока
При измерении тока можно определить только величину электрических потерь. Более полно определить параметры конструкции позволяет более сложная схема измерений.
Применение ваттметра
Подключив в первичную цепь ваттметр, можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.
Измерение потерь
При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:
- Нагрев проводов обмоток.
- Нагрев сердечника.
- Снижение КПД.
- Появление магнитного поля рассеивания.
Схема замещения в режиме трансформатора
Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.
Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:
- для первичной обмотки комплексное сопротивление включается последовательно в цепь;
- для вторичной обмотки параллельно нагрузке.
Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.
Активное сопротивление – это сопротивление проводов обмотки.
От чего зависит магнитный поток взаимоиндукции в режиме ХХ
Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.
Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.
Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.
Примеры расчетов и измерений в режиме ХХ
Измеряя ток, напряжение и мощность трансформатора в опыте холостого хода, можно рассчитать следующие дополнительные данные:
- активное сопротивление первичной цепи r1=Pхх/U 2 ;
- полное сопротивление первичной цепи z1=U/Iхх;
- индуктивное сопротивлении е x1=√(z 2 -r 2 ).
Найти ток холостого хода без применения амперметра можно по показаниям вольтметра и ваттметра:
Источник
Режим холостого хода трансформатора
Трансформатор, как таковой, предназначен для повышения или понижения напряжения, если это необходимо, а также он может служить для разделения электрических цепей. Он имеет, как минимум, две обмотки. Причем, одна из них – первичная, а другая (или несколько) – вторичные. В повышающем трансформаторе количество витков во вторичной обмотке больше, чем в первичной, в понижающем – меньше.В разделительных трансформаторах – число витков одинаково в обоих обмотках.
Каждый трансформатор через определенный промежуток времени проходит проверку, или, говоря техническим языком – поверку. Главные испытания, которые проходит любой трансформатор, это:
- Проверка работы в режиме холостого хода
- Проверка под нагрузкой (на различных режимах)
- Проверка работы в режиме короткого замыкания.
Обычный двухобмоточный трансформатор на схемах обозначается следующими символами:
В зависимости от того, разделительный это трансформатор(рис 1), повышающий(рис 2) или понижающий(рис 3).
Проверка работы холостого хода производится при подключении в сеть первичной обмотки.
Вторичная, при этом, на нагрузку не включается. Имеем напряжение U1на первичной обмотке, и напряжение U2 на вторичной. Ток I1будет иметь некоторое значение, в отличие отI2 который будет равен нулю.
Схема подключения для данного опыта представлена на рис. 4
Для лучшего понимания процесса перечертим трансформатор (см. рис.5) в ином виде:
Первичная обмотка с числом витков W1 подключена в сеть стандартного напряжения U1. Если обмотка имеет сопротивление не равное бесконечности, то по ней потечет ток I1. Из курса физики знаем, что всякая обмотка, через которую протекает ток, создает магнитное поле. В данном случае переменное поле, то есть интенсивность его меняется во времени и направление поля тоже меняется во времени. Магнитный поток Ф зависит от индуктивности катушки Lи силы тока в ней, в данном случае I1. Формула: Ф = L* I1. Сердечник трансформатора, на котором намотаны катушки, обычно делаются из тонких стальных листов, для уменьшения потерь этого магнитного потока. Однако потери все равно есть, из-за, так называемого, рассеивания. Данный магнитный поток будет одинаковым, как в режиме холостого хода, так и в режиме нагрузки, то есть, когда на вторую обмотку подключен потребитель и по ней потечет ток.
Вышеназванный переменный магнитный поток Ф будет создавать электродвижущую силу как во вторичной обмотке e2, так и в первичнойe1. Во вторичной обмотке нагрузки нет (потребитель не подключен), то нет и тока I2. То есть он равен нулю. А напряжение U2 есть, какое оно мы рассмотрим позже.
В первичной обмотке цепь замкнута и ЕДС e1 создает ток противодействующий основному току I1 и собственный магнитный поток, который противодействует потоку Ф. В связи с этим, ток холостого хода никогда не бывает большим. Для крупных трансформаторов это в пределах 5%, максимум 10% от номинального. Для трансформаторов малой мощности вне ответственных изделиях, например зарядных устройствах телефонов, этот ток может доходить до 30 и более процентов от номинального.
Напряжение U1 есть сумма от падений напряжений на активном сопротивлении UА1, а так же от создания магнитного потока Ф, которое обозначим UL1 и падения напряжения от создания потока рассеивания ULS1.
Значит формула, согласно закону Кирхгофа будет иметь вид: U1=UА1+UL1+ULS1. В свою очередь UА1=I1*R1. Где R1 – активное сопротивление на первичной обмотке. Витки обмотки, как правило, медные, по этой причине сопротивление R1 имеет очень малое значение.
Если трансформатор собран для ответственной работы, то и поток рассеивания так же будет мал. ULS1=XLS*I1=2πfLs1* I1, где f–промышленная частота 50 герц, а Ls1 – поток рассеивания. И тем и другим слагаемым можно пренебречь по сравнению с потерями на перемагничивание стали сердечника трансформатора. В этом случае мы допускаем, что все напряжение тратится на создание потока Ф, а он зависит от тока в проводнике, в данном случае I1 и индуктивности L, которая зависит от количества витков в обмотке. Но так как магнитный поток в первичной и вторичной обмотке одинаков, то напряжение U1 и U2 зависят только от количества витков в первичной и вторичной обмотке. Коэффициент зависимости этих напряжений и называется коэффициентом трансформации К = U1/U2= e1/e2 = W1/W2.
Напомним, что противодействие основному потоку возникает только при его изменении, то сеть при переменном потоке (иными словами при переменном токе в цепи). Если обмотку трансформатора включить в цепь постоянного тока, то она наверняка перегорит, поскольку противодействие будет составлять только активное сопротивление, а оно очень мало.
Если нам известен ток первичной обмотки I1, напряжение на первичной обмотке U1, напряжение на вторичной обмотке U2 и потребляемая трансформатором мощность S, то мы можем вычислить следующие параметры:
- Коэффициент трансформации К = U1/U2
- Процентное значение тока холостого хода: i = (Ixx/IH)*100, где Ixx – ток холостого ходав данном случае I1, IH – ток при номинальной нагрузке.
- Активное сопротивление первичной обмотки R1 = PА/Ixx
- Полное сопротивление первичной обмотки Z1 = U1/Ixx
- Индуктивное сопротивление первичной обмотки X1 = (Z21 -R21)
- Коэффициент мощности трансформатора cosφ = S/I12R1
Поскольку пункт 2 невозможно вычислить без проверки трансформатора при нагрузке, то и последовательность проверок, как правило, следующее: под нагрузкой, при коротком замыкании и при режиме холостого хода.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Источник
Режим холостого хода (электроника)
- Режим холосто́го хо́да в электронике — состояние четырехполюсника, при котором к его выводам не подключено никакой нагрузки (то есть, другими словами, сопротивление нагрузки бесконечно).
Часто вместо термина Режим холостого хода используется аббревиатура: Режим ХХ или просто ХХ.
Источник: Википедия
Связанные понятия
Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.
Холостой ход — режим работы какого-либо устройства, обычно источника механической или электрической энергии, при отключенной нагрузке.
Блок ограничителя тока — практика в электрических или электронных схемах, устанавливающая верхний предел тока, который может быть доставлен на нагрузку, с целью защиты цепи, генерирующей или передающей ток, от вредного воздействия короткого замыкания или аналогичной проблемы.
Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии.
Автоматика ликвидации асинхронного режима (автоматика прекращения асинхронного хода) (АЛАР), (АПАХ) — автоматическая система управления в электроснабжении, является автоматикой энергосистем, поддерживая их устойчивость (глобально).
Упоминания в литературе
Реакция турбокомпрессора (ТК) на изменение положения педали акселератора более замедленная. Для примера можно привести такие цифры: с момента изменения положения педали в режиме холостого хода давление наддува в 1,5 бар механический нагнетатель обеспечивает примерно за 0,25 секунды, волновой нагнетатель – за 0,80 секунды, а ТК – за 2,15 секунды. Такая низкая приемистость объясняется отсутствием механической связи ротора ТК с коленчатым валом двигателя. Замедленная реакция срабатывания ТК на изменение частоты вращения KB наглядно представлена на рисунке 10.
Связанные понятия (продолжение)
Максима́льная то́ковая защи́та (МТЗ)— вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.
Стабилизатор переменного напряжения (англ. Voltage regulator) — устройство, на выходе которого обеспечивается стабильное переменное напряжение той же частоты, что и питающее напряжение.:6Стабилизированный источник переменного напряжения (англ. Power conditioner) — устройство, на выходе которого обеспечивается переменное стабильное напряжение с частотой, не зависящей от частоты питающего напряжения.:6Кроме стабилизаторов, на выходе которых напряжение соответствует номинальному напряжению на входе…
Выключатель магнитного поля (автомат гашения поля, АГП)- электрический аппарат, предназначенный для коммутации в цепи обмотки возбуждения крупных синхронных машин и машин постоянного тока.
Устройство дифференциального тока (УДТ), (англ. residual current device, RCD): Контактное коммутационное устройство, предназначено для того чтобы включать, проводить и отключать электрические токи при нормальных условиях эксплуатации и размыкать контакты, когда дифференциальный ток достигает заданного значения при установленных условиях. В качестве УДТ используют автоматический выключатель, управляемый дифференциальным током, без встроенной защиты от сверхтока (ВДТ) и автоматический выключатель…
То́ковая отсе́чка — вид релейной защиты, действие которой связано с повышением значения силы тока на защищаемом участке электрической сети.
Отрицательная обратная связь (ООС) — вид обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое противодействует первоначальному изменению.
И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме, то есть регулирующий элемент периодически открывается и закрывается.
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).
Классы электронных усилителей и режимы работы активных усилительных приборов (ламп или транзисторов) традиционно обозначаются буквами латинского алфавита. Буквенные обозначения классов усиления могут дополнительно уточняться суффиксом, указывающим на режим согласования мощного каскада с источником сигнала (AB1, AB2 и т. п.) и с нагрузкой (F1, F2, F3). Устройства, совмещающие свойства двух «однобуквенных» классов, могут выделяться в особые классы, обозначаемые сочетанием двух букв (AB, BD, DE и устаревший…
Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, силы тока, сопротивления и т. д.).Для силовых трансформаторов ГОСТ 16110-82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»:п. 9.1.7.
Исто́чник (система, агрегат) бесперебо́йного электропита́ния (ИБП), UPS (англ. Uninterruptible Power Supply (Source, Systems)) — источник электропитания, обеспечивающий при кратковременном отключении основного источника мощность питания, а также защиту от помех в сети основного источника. ИБП является вторичным источником электропитания:п. 3.1.1 Преобразованию может подвергаться как качество электрической энергии, так и параметры электрической энергии (напряжение, частота).Источники бесперебойного…
Ограничитель тока короткого замыкания (ОТКЗ) — устройство, ограничивающее ток короткого замыкания без полного разъединения сети. Устройство предназначено в первую очередь для выполнения защитной функции. Различают несколько типов ОТКЗ: сверхпроводниковые, твердотельные, индуктивные.
Метод эквивалентного генератора — метод преобразования электрических цепей, в котором схемы, состоящие из нескольких ветвей с источниками ЭДС, приводятся к одной ветви с эквивалентным значением.
Токовое зеркало — элемент транзисторной схемотехники, представляющий собой генератор тока, управляемый входным током, в котором входной и выходной токи имеют разное направление и один общий вывод источника питания, причем соотношение токов (коэффициент отражения) сохраняется постоянным в широком диапазоне и мало зависит от напряжения и температуры. Классическая схема токового зеркала содержит два транзистора одинаковой проводимости с резисторами в коллекторных цепях. Соотношение номиналов резисторов…
Феррорезонанс — нелинейный резонанс, который может возникать в электрических цепях. Необходимое условие — ёмкость и нелинейная индуктивность в контуре. В линейных цепях феррорезонанс не встречается.
Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток.
Отсле́живание то́чки максима́льной мо́щности (ОТММ, англ. maximum power point tracking, MPPT) — способ, использующийся для получения максимальной возможной мощности на выходе фотомодулей, ветроустановок, магдино, электродвигателей, работающих в режиме рекуперативного торможения. Для ОТММ используются цифровые устройства, анализирующие вольт-амперную характеристику для определения оптимального режима работы фотомодуля(или иного источника тока). Цель устройства отслеживания точки максимальной мощности…
Под параллельной работой генераторов понимается выработка электроэнергии двумя или более агрегатами на общую нагрузку. Условие для параллельной работы — это равенство частоты, напряжения, порядка чередования фаз и углов фазового сдвига на каждом генераторе.
Подробнее: Параллельная работа дизель-генераторов
Трансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.
Мультивибра́тор — релаксационный генератор электрических прямоугольных колебаний с короткими фронтами.
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).
Устройство плавного пуска (УПП) — механическое, электротехническое (электронное) или электромеханическое устройство, используемое для плавного пуска (остановки) электродвигателей с небольшим моментом страгивания (например с вентиляторной характеристикой) рабочей машины.
Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.
Бандга́п (англ. bandgap, запрещённая зона) — стабильный транзисторный источник опорного напряжения (ИОН), величина которого определяется шириной запрещённой зоны используемого полупроводника. Для легированного монокристаллического кремния, имеющего при Т=0 К ширину запрещённой зоны Eg=1,143 эВ, напряжение VREF на выходе бандгапа обычно составляет от 1,18 до 1,25 В или кратно этой величине, а его предельное отклонение от нормы во всём диапазоне рабочих температур и токов составляет не более 3 %. Бандгапы…
Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.
Дифференциа́льная защи́та — один из видов релейной защиты, отличающийся абсолютной селективностью и выполняющийся быстродействующей (без искусственной выдержки времени). Применяется для защиты трансформаторов, автотрансформаторов, генераторов, генераторных блоков, двигателей, воздушных линий электропередачи и сборных шин (ошиновок).
Компенса́ция реакти́вной мо́щности — целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии. Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная…
Трёхфазный двигатель — электродвигатель, конструктивно предназначенный для питания от трехфазной сети переменного тока.
Потенцио́метр (от лат. potentia — «сила» и греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения напряжения путём сравнения двух, в общем случае, различных напряжений или ЭДС с помощью компенсационного метода. При известном одном из напряжений позволяет определять второе напряжение.
Высоковольтная линия электропередачи постоянного тока (HVDC) использует для передачи электроэнергии постоянный ток, в отличие от более распространенных линий электропередачи (ЛЭП) переменного тока. Высоковольтные ЛЭП постоянного тока могут оказаться более экономичными при передаче больших объёмов электроэнергии на большие расстояния. Использование постоянного тока для подводных ЛЭП позволяет избежать потерь реактивной мощности, из-за большой ёмкости кабеля неизбежно возникающих при использовании…
Сверхнизкое напряжение (англ. extra-low voltage; ELV) — напряжение, не превышающее 50 В переменного тока и 120 В постоянного тока. Применяется в целях уменьшения опасности поражения электрических током. В особо опасных помещениях его применение не может обеспечить полную защиту от поражения электрическим током. Применение ограничивается невозможностью создания протяженных сетей и использования мощных потребителей.Сверхнизкое напряжение относится к диапазону I по стандарту МЭК 60449. Данный диапазон…
Реоста́т (потенциометр, переменное сопротивление, переменный резистор; от др.-греч. ῥέος «поток» и στατός «стоя́щий») — электрический аппарат, изобретённый Иоганном Христианом Поггендорфом, служащий для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления. Как правило, состоит из проводящего элемента с устройством регулирования электрического сопротивления. Изменение сопротивления может осуществляться как плавно, так и ступенчато.
Ключ (переключатель, выключатель) — электрический коммутационный аппарат, служащий для замыкания и размыкания электрической цепи.
Яче́йка Блэ́кмера (англ. Blackmer cell) — схема электронного управляемого напряжением усилителя (УНУ, амплитудный модулятор) с экспоненциальной характеристикой управления, предложенная и доведённая до серийного выпуска Дэвидом Блэкмером в 1970—1973 годы. Четырёхтранзисторное ядро схемы образовано двумя встречно включёнными токовыми зеркалами на комплементарных биполярных транзисторах. Входной транзистор каждого из зеркал логарифмирует входной ток, а выходной транзистор антилогарифмирует сумму логарифма…
Однофазные замыкания на землю — это такое повреждение на линиях электропередачи, при котором одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей.
Мультивибратор Ройера или генератор Ройера (Встречается написание Роера), как правило транзисторный релаксационный генератор колебаний с формой импульсов близкой к прямоугольной, использующий трансформатор или индуктивность с насыщающимся сердечником. Схема изобретена в 1954 году Джоржем Роером (George H. Royer). Запатентована в 1957 году (US2783384).
При включении биполярного транзистора по схеме с общим эмиттером (ОЭ) входной сигнал подаётся на базу относительно эмиттера, а выходной сигнал снимается с коллектора относительно эмиттера. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Данное включение транзистора позволяет получить наибольшее усиление по мощности, потому что усиливается и ток, и напряжение.
Подробнее: Каскад с общим эмиттером
Вторичный источник электропитания — устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах — например материнская плата компьютера имеет встроенные преобразователи…
Воздушный автоматический выключатель (силовой автоматический выключатель, автоматический выключатель) — электрический аппарат, который способен включать, проводить и отключать электрический ток. Автоматическое отключение электрической цепи происходит при перегрузках и коротком замыкании. Отключение токов перегрузки и короткого замыкания автоматическим выключателем должно производиться в соответствии с заданными времятоковыми характеристиками.
Резонанс напряжений — резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
Уда́рный генера́тор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).
Обратимость электрических машин вызвана одинаковым устройством преобразователей электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: электродвигатель может использоваться в качестве генератора и наоборот, электродинамическая головка может использоваться в качестве микрофона и наоборот, и т. п.
Яче́йка Ги́лберта (англ. Gilbert cell) в электронике — схема четырёхквадрантного аналогового умножителя, предложенная Барри Гилбертом в 1968 году. Она представляет собой ядро умножителя на трёх дифференциальных каскадах, дополненное диодными преобразователями входных напряжений — в токи (V1, V2 на схемах). Ячейка Гилберта, в модифицированной бета-зависимой форме, выполняет функцию смесителя или балансного модулятора в большинстве современных радиоприёмников и сотовых телефонов.