Ответ5.
При несимметричной нагрузке комплексы
сопротивлений фаз нагрузки не
равны
Zа≠Zb≠Zc,
Вопрос6. Для чего используется нейтральный провод?
Ответ6.
Нейтральный провод используется для
выравнивания фазных напряжений на
клеммах нагрузки . ŮA=Ů
а ; ŮВ
=Ůb;
ŮC
=Ůc.
В этом случае, падения напряжения на
нагрузке остаются равными фазным
напряжениям генератора. В случае, если
внутреннее сопротивление генератора
пренебрежимо мало ( равно нулю ), напряжения
на нагрузке остаются равными фазным
напряжениям генератора, постоянными и
не зависят от величины нагрузки. (Ток
будет изменяться, а напряжение на
нагрузке не изменится).
Вопрос7. Какими уравнениями описывается электрическое состояние цепи при несимметричной нагрузке?
Ответ7.
При несимметричной нагрузке фаз и
отсутствии нейтрального провода фазные
комплексы напряжения на нагрузке
,,связаны с соответствующими комплексами
напряжений источника ŮA
,ŮВ
, ŮС
уравнениями Кирхгофа :
;
;;
где-комплексное
напряжение между нейтральными точками
нагрузки и источника (сети).
называют
напряжением смещения нейтрали.
Напряжение
смещения нейтрали рассчитывается
методом 2-х узлов:
где : Ė– комплексные ЭДС, ġ- комплексы
проводимости фаз нагрузки.
Токи фаз нагрузки
находят по закону Ома:
İa=Ůa/Za
= (ŮA
—)/Za;
İb=Ůb/Zb
= (ŮB
—)/Zb;
İa
=Ůc/Zc
= (ŮC
—)/Zc.
Вопрос8. Как построить совмещенные векторные диаграммы напряжений и токов для исследованных режимов трехфазной цепи?
Ответ8.
Построение
векторных диаграмм начинаем с векторов
линейных напряжений, задаваемых сетью
и от условий опыта не зависящих. Это
равносторонний треугольник образованный
векторами линейных напряжений. Длина
вектора соответствует линейному
напряжению, а углы между векторами
соответствуют сдвигу фаз между векторами
напряжений.
Построение
векторной диаграммы для случая равномерной
нагрузки.(
симметричный режим).
1.Выбираем
комплексную плоскость (+1,j).
Реальную ось +1 направляем вертикально
вверх, мнимую- вдоль оси -Х. ( поворот
на угол +90°).
2.
Выбираем масштаб напряжений, например
1см→20В. Вектор Ua
(в масштабе) откладываем вдоль реальной
оси +1.Конец вектора обозначаем малой
буквой а.
3.Вектора
Ub
и Uc
(в масштабе) рисуем под углами +120° и
–120° соответственно. Концы векторов
обозначаем малыми буквами b
и c
соответственно.
4.
Точку, соответствующую, началу координат,
обозначим малой буквой n.
Это точка нейтрали приемника.
5.Строим вектора линейных напряжений.
Для этого соединяем концы фазных
векторов. Получим вектора Uab=
UAB,Ubc=
UBC, Ucа=
UCА.
Отметим, что линейные напряжения
приемника равны линейным напряжениям
генератора.
Точка
N
на векторной диаграмме, соответствующая
нейтральной точке генератора, находится
в центре треугольника линейных напряжений.
В данном случае нейтраль генератора N
совпадает с нетралью приемника n.
В общем
случае точку n,
соответствующую нейтральной точке
нагрузки, находят методом засечек.
Векторы токов откладывают по отношению
к соответствующим векторам фазных
напряжений с учетом сдвига фаз между
ними.
Ниже приведены
векторные диаграммы для различных
режимов работы.
Режим1.
Равномерная
нагрузка без нейтрального провода
( Рис 8.1.1).
Режим
2. Обрыв
фазы А(
Рис 8.1.2):
При
обрыве фазы А и одинаковой нагрузке
двух других фаз, нейтральная точка
приемника n
переместится на середину линейного
напряжения ŮBC
.Сопротивления
Zb
и Zc
окажутся
соединенными последовательно и
включенными на линейное напряжение
ŮBC.
Падение
напряжения между точками А и n
увеличится, а фазные напряжения Ůb
и Ůc
станут равными половине линейного ŮBC.
Рис 8.1.2 обрыв фазы
Режим
3. Короткое
замыкание фазы А(
Рис 8.1.3).
При
замыкании фазы А и одинаковой нагрузке
двух других фаз (то есть при соединении
начала нагрузки фазы А с нулевой точкой
нагрузки) точка n
перемещается в точку А. Фазное напряжение
Ůа
становится равным нулю, ток İa
увеличивается,
а фазные напряжения Ůb
и Ůc
становятся равными линейным.
Рис 8.1.3 короткое
замыкание
Режим
4. Неравномерная
нагрузка без нейтрального провода(
Рис 8.1.4).
Сопротивления,
Zа≠Zb≠Zc,
фазные
напряжения приемника Ůа
≠Ůb
≠Ůc,
между
точками N
и n
появляется напряжение смещения нейтрали.
4.1Вначале строим
треугольник линейных напряжений.
4.2.
Методом засечек( циркулем или линейкой)
из каждой вершины откладываем
соответствующие вектора фазных напряжений
приемника. Точка пересечения дуг даст
точку нейтрали приемника n.
Точку нейтрали
генератора N
оставляем на прежнем месте.
4.3
Соединяем точку n
и N
. Это вектор
напряжения смещения нейтрали UnN
( в масштабе).
4.4
Строим вектора фазных токов нагрузки.
В случае, если нагрузкой являются
лампочки, которые можно представить
как активные сопротивления , то сдвига
фаз между фазным напряжением и фазным
током нагрузки не будет. Поэтому вектора
токов откладываем ( в масштабе) вдоль
соответствующих векторов фазных
напряжений.
***)
В общем
случае надо определить сдвиги фаз между
током и соответствующим фазным
напряжением по закону Ома в комплексной
форме и строить вектор тока с помощью
транспортира.
Рис 8.1.4 Неравномерная
нагрузка
Режим
5. Неравномерная
нагрузка с нейтральным проводом(Рис
8.1.5).
При
наличии нейтрального провода фазные
напряжения приемника становятся равными
фазным напряжениям источника ŮA=Ů
а ; ŮВ
=Ůb;
ŮC
=Ůc
:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Трехфазные несимметричные цепи:
Трехфазная цепь несимметрична, если комплексы сопротивлений ее фаз неодинаковы.
Несимметричной может быть действующая в цепи система э. д. с. (не равны модули э. д. с. или фазовые сдвиги между каждой парой э. д. с.). .
Для расчета несимметричной цепи применяются различные методы в зависимости от ее схемы и вида несимметрии.
Расчет несимметричной трехфазной цепи при соединении источника и приемника звездой
На схеме (см. рис. 20.4) видно, что при соединении звездой трехфазная система представляет собой электрическую цепь с двумя узлами — нейтральными точками N и N’. Наиболее удобным методом расчета в данном случае является метод узлового напряжения.
Определение токов
Рассмотрим сначала общий случай расчета цепи с нулевым проводом, сопротивление которого ZN. При этом сделаем некоторые упрощения: сопротивления линейных проводов и фаз источников будем полагать равными нулю. Если указанные сопротивления нельзя считать равными нулю, их можно отнести к приемнику, прибавив к сопротивлениям последнего по правилам сложения комплексов.
При таком упрощении потенциалы линейных зажимов источника и приемника (например, точек А и А’) можно считать одинаковыми.
Напряжение между нулевыми точками N и N’, или узловое напряжение
Смещение нейтрали
На рис. 21.1 изображена топографическая диаграмма цепи рис. 20.4, а при несимметричной нагрузке.
При наличии сопротивления в нулевом проводе () нулевая точка приемника на топографической диаграмме не совпадает с нулевой точкой источника. Поэтому напряжение UN называют напряжением смещения нейтрали. Вследствие смещения нейтрали напряжения на фазах приемника оказываются неодинаковыми, несмотря на симметрию фазных напряжений источника (см. решение задачи 21.3).
Рис. 21.1. Топографическая диаграмма при несимметричной нагрузке (соединение звездой)
Из формулы (21.1) видно, что симметрия фазных напряжений на нагрузке, когда UN = 0, достигается в двух частных случаях.
1. При симметричной нагрузке, когда комплексы проводимостей фаз равны: . В этом случае в числителе проводимость можно вынести за скобку, внутри которой складывается три вектора э. д. с. источника, равных по величине и сдвинутых по фазе на 120°; эта сумма равна нулю (см. рис. 20.8, б) и UN = 0. Поэтому ток в нулевом проводе равен нулю [см. формулу (21.4)] и необходимость в этом проводе отпадает, а электроснабжение симметричных приемников осуществляется по трехпроводной системе.
2. В четырехпроводной системе, когда сопротивление нулевого провода равно нулю (YN = ∞.)
Роль нулевого провода
Нулевой провод является уравнительным. Потенциалы нейтрали источника и приемника с помощью этого провода принудительно уравнены, а поэтому звезда векторов фазных напряжений приемника точно совпадает со звездой фазных напряжений источника.
Четырехпроводная система применяется в электрических сетях с напряжением 380/220 В при электроснабжении от общего источника силовой (электродвигатели) и осветительной (электролампы) нагрузки.
При несимметричной нагрузке обрыв нулевого провода () вызывает значительное изменение токов и фазных напряжений, что в большинстве случаев недопустимо. Поэтому в нулевой провод предохранители не устанавливаются.
Определение мощности
При несимметричной нагрузке нужно определить мощность каждой фазы. Например, для фазы А:
Аналогично определяются мощности других фаз.
Активная мощность всей трехфазной цепи равна сумме мощностей фаз:
Реактивная мощность цепи равна алгебраической сумме реактивных мощностей фаз:
В этой сумме реактивная мощность катушки считается положительной, а реактивная мощность конденсатора — отрицательной.
Задача 21.1.
При соединении звездой с нулевым проводом определить фазные напряжения и токи в приемнике энергии, сопротивления которого заданы комплексами:
Действующая величина симметричной трехфазной системы э. д. с. 220 В. Сопротивление нулевого провода
Построить векторную диаграмму.
Сопротивлениями линейных проводов и внутренними сопротивлениями источника э. д. с. пренебречь.
Решение. Схема, соответствующая условию задачи, показана на рис. 21.2, а.
Проводимости ветвей между узловыми точками NN’:
Рис. 21.2. К задаче 21.1
Комплексы э. д. с. источника:
Узловое напряжение
Фазные напряжения приемника:
Токи в фазах и нулевом проводе:
Векторная диаграмма напряжений и токов показана на рис. 21.2, б.
Задача 21.3.
Электрические лампы включены звездой в трехфазную сеть с линейным напряжением 380 В. В каждую фазу включены по 50 ламп с номинальной мощностью 60 Вт каждая, номинальным напряжением 220 В. Как изменяются фазные напряжения и токи при изменении нагрузки одной фазы от холостого хода до короткого замыкания при обрыве нулевого провода?
В каждом выбранном случае нагрузки построить векторную диаграмму, определить мощность всей трехфазной цепи.
Решение. Условию задачи соответствует схема рис. 21.3, а, на которой группа ламп в каждой фазе условно показана двумя лампами.
Оставляя постоянным число ламп в фазах В и С, будем менять его в фазе А. Подсчеты по условию задачи выполним для таких нагрузок в фазе А: 50, 25, 100 ламп, короткое замыкание, холостой ход.
1. При включении в каждую фазу по 50 одинаковых ламп нагрузка симметрична. Поэтому фазные напряжения на нагрузке равны фазным напряжениям в сети:
Напряжение на лампах равно номинальному. В этом случае лампы работают с номинальной мощностью.
Это даёт право определить фазные токи по заданной мощности ламп:
При соединении звездой IФ = IЛ, поэтому Iл = 13,6 А. Общая мощность трехфазной цепи
Р = ЗРФ = 3 • 60 • 50 = 9000 Вт.
2. В фазе А включено 25 ламп.
При несимметричной нагрузке напряжения на лампах отличаются от фазных напряжений в сети. Поэтому определить токи по заданной мощности ламп нельзя, так как действительная мощность ламп и фазные напряжения их неизвестны. При решении задачи будем считать, что сопротивление ламп в накаленном состоянии нити практически не меняется при некотором изменении их мощности.
Сопротивление лампы в номинальном режиме
Сопротивление фаз В и С при включении 50 ламп
Сопротивление фазы А
Комплексы фазных напряжений в сети:
Проводимости ветвей:
Смещение нейтрали
Напряжения фаз:
Токи в фазах:
Мощность всех ламп в фазах:
Мощность одной лампы:
Общая мощность в трехфазной системе
Векторная диаграмма напряжений для различной нагрузки фазы А показана на рис. 21.3, д.
Положение нулевой точки на диаграмме соответствует такой нагрузке фазы А: 1 — симметричная нагрузка (во всех фазах по 50 ламп); 2 — в фазе А 25 ламп; 3 — фаза А разомкнута (холостой ход); 4 — в фазе А 100 ламп; 5 — в фазе А короткое замыкание.
Выполните расчет трехфазной цепи для случаев нагрузки 3, 4, 5 подобно приведенному расчету для случая нагрузки 2, проверьте соответствие результатов расчета векторной диаграмме рис. 21.3, д.
Как видно, нулевая точка нагрузки при изменении проводимости фазы А перемещается на прямой АD, которая является перпендикуляром, опущенным из точки А к вектору линейного напряжения UBC. При холостом ходе фазы А (обрыв линейного провода в этой фазе) нулевая точка перемещается в точку D и напряжения на двух других фазах UB и UC по величине оказываются равными половине линейного напряжения UBC (рис. 21.3, б).
Рис. 21.3. К задаче 21.3
То же следует из схемы рис. 21.3, в. В рассматриваемом случае сопротивления фаз В и С оказываются включенными последовательно на линейное напряжение UBC.
Сопротивления эти равны, поэтому линейное напряжение делится между двумя фазами поровну.
При коротком замыкании фазы А линейный провод этой фазы подводится непосредственно к нулевой точке нагрузки (рис. 21.3, г). Поэтому лампы, включенные в фазы В и С, оказываются под линейным напряжением.
Расчет несимметричной трехфазной цепи при соединении треугольником
Трехфазная цепь при соединении приемника треугольником и любой схеме соединения фаз источника имеет разветвленную многоконтурную схему (см., например, рис. 20.8, а; 21.5).
Расчет такой цепи выполняется одним из известных методов с учетом состава ее элементов и схемы соединения.
Соединение источника и приемника треугольником
Расчет сложной цепи (см. рис. 20.8, а) значительно упрощается, если не принимать во внимание сопротивление проводов. В этом случае напряжения на фазах приемника равны соответствующим напряжениям источника и, как правило, представляют собой симметричную систему.
Если трехфазная система напряжений, приложенных к приемнику, известна, то фазные токи
где — полные сопротивления фаз.
Линейные токи можно определить графически, как показано на рис. 21.4. Если задача решается в комплексной форме, линейные токи находят по формулам (20.7).
Мощность в несимметричной трехфазной цепи при соединении треугольником определяют по тем же формулам, что и при соединении звездой (21.6), (21.7).
Рис. 21.4. Векторная диаграмма токов при несимметричной нагрузке (соединение треугольником)
Рис. 21.5. К вопросу о преобразовании треугольника сопротивлений в эквивалентную звезду в трехфазной цепи
Преобразование звезды и треугольника сопротивлений в трехфазных цепях
Расчет трехфазных цепей при смешанном соединении (звездой и треугольником), с учетом сопротивлений проводов линии представляет значительные трудности.
В этих случаях упрощения достигаются благодаря применению метода взаимного преобразования звезды и треугольника.
На рис. 21.5 приемник энергии соединен треугольником. С учетом сопротивлений проводов линии () расчет такой цепи удобно выполнить, заменив треугольник сопротивлений эквивалентной звездой. Общее сопротивление фазы определяется сложением сопротивлений проводов линии и эквивалентной звезды приемника.
Если в ходе расчета схемы со смешанным соединением приемников — звездой и треугольником (рис. 21.6) — необходимо определить общее сопротивление фазы, это делается преобразованием звезды в треугольник или треугольника в звезду.
При симметричной нагрузке можно преобразовать треугольник в звезду, а затем две звезды заменить одной. Последняя операция возможна только при симметричной нагрузке, когда фазные напряжения у этих «звезд» одинаковы (смещение нейтрали отсутствует). При несимметричной нагрузке звезду следует преобразовать в эквивалентный треугольник, а затем сложением соответствующих проводимостей определить общую проводимость каждой фазы.
Рис. 21.6. к расчету трехфазной цепи при соединении приемников звездой и треугольником
Если в последнем случае требуется учесть сопротивление проводов, то общий треугольник еще раз приходится преобразовать в звезду и к сопротивлениям звезды прибавить сопротивления проводов линии.
Задача 21.4.
Сопротивления фаз приемника подключены треугольником к трехфазному генератору, обмотки которого также соединены треугольником. Действующие значения симметричной системы э. д. с. генератора 220 В. Пренебрегая сопротивлениями линейных проводов и обмоток генератора, определить фазные и линейные токи, активную, реактивную и полную мощности каждой фазы и всей цепи. Построить векторную диаграмму.
Решение. Схема рис. 20.8, а соответствует условию задачи. Если сопротивления линейных проводов и обмоток генератора считать равными нулю, то фазные напряжения приемника равны соответствующим э. д. с.:
Фазные токи в приемнике:
Линейные токи:
Сумма линейных токов
Равенство нулю суммы линейных токов является общим свойством трехфазных трехпроводных цепей при соединении звездой и треугольником при симметричной и несимметричной нагрузках.
Рис. 21.7. К задаче 21.4
Рис. 21.8. К задаче 21.5
Мощности фаз:
Общая мощность системы:
активная
реактивная
Векторная диаграмма построена на рис. 21.7.
Задача 21.5.
Приемник электрической энергии, соединенный треугольником, включен в сеть с линейным напряжением 120 В. Сопротивления фаз: (инд.); (емк.).
Начертить схему по условию задачи. Определить фазные и линейные токи, активную, реактивную и полную мощности в каждой фазе и всей цени. Построить векторную диаграмму.
Решение. Схема цепи изображена на рис. 21.8, а.
Решим задачу без применения комплексных чисел. Токи в фазах:
Линейные токи определим графически с помощью векторной диаграммы. Для этого найдем активные и реактивные токи фаз.
В фазе АВ включено активное сопротивление, поэтому
В фазе ВС последовательно соединены R и ХL, поэтому
В фазе CA включено емкостное сопротивление, следовательно,
Векторная диаграмма цепи показана на рис. 21.8, б. Для определения линейных токов постройте векторную диаграмму на листе миллиметровой бумаги в масштабах:
Линейные токи:
Мощности фаз:
активные
реактивные
полные
Мощность всей цепи:
активная
реактивная
Знак минус указывает на емкостный характер реактивной мощности цепи.
Симметричные составляющие несимметричной трехфазной системы
Несимметричную трехфазную систему токов (напряжений или других синусоидальных величин) можно представить в виде суммы трех симметричных систем.
Разложение несимметричной системы векторов на симметричные составляющие применяется для расчета и анализа несимметричных режимов в трехфазных цепях: при симметричной нагрузке, но несимметричной системе э. д. с., при однофазных и двухфазных коротких замыканиях, при обрыве линейных проводов в цепях с симметричной системой э. д. с.
Комплексы симметричных составляющих
Первая симметричная система имеет прямую последовательность фаз ( рис. 21.9, а), вторая — обратную ( рис. 21.9, б). Третья система, называемая системой нулевой последовательности, состоит из трех равных величин, совпадающих по фазе ( рис. 21.9, в).
Рис. 21.9. Симметричные составляющие несимметричной системы
Система величин:
прямой последовательности
обратной последовательности
нулевой последовательности
Умножение на означает поворот вектора на 120″ против движения часовой стрелки. Обозначим через а и будем называть это выражение поворотным множителем.
Поворот вектора против часовой стрелки на 240° можно выразить умножением его на а2.
Умножение вектора на а3 не меняет его положения:
С помощью поворотного множителя а системы прямой и обратной последовательности можно записать так:
Сумма синусоидальных величин симметричной системы равна нулю, поэтому
Разложение несимметричной системы на симметричные составляющие
Выразим комплексы несимметричной системы через симметричные составляющие:
Если из этой системы уравнений можно однозначно определить симметричные составляющие через известные величины несимметричной системы, то этим будет доказана возможность разложения несимметричной системы на три симметричные — прямой, обратной и нулевой последовательности.
Используя выражения (21.10), запишем систему уравнений (21.12) в таком виде:
Решение системы уравнений (21.13) позволяет найти симметричные составляющие
Сложим уравнения:
Учитывая формулу (21.11), найдем
Умножим второе уравнение в системе (21.13) на , а третье — на и сложим все уравнения:
откуда
Умножим второе уравнение в системе (21.13) на , а третье на и сложим все уравнения:
= + +
+ + = (1 + + ) + • 3 + (1 + + )
откуда
= (21.16)
Свойства трехфазных цепей
Отметим некоторые свойства трехфазных цепей в отношении симметричных составляющих токов и напряжений.
Степень несимметрии линейных напряжений оценивается коэффициентом несимметрии, т.е. отношением составляющей обратной последовательности напряжений к составляющей прямой последовательности.
ε = 100 • Uоп/Uпп.
Отсюда следует, что ток в нулевом проводе можно найти, если утроить величину составляющей тока нулевой последовательности.
В трехпроводной системе сумма линейных токов равна нулю. Из формулы (21.14) следует, что линейные токи в этом случае не содержат составляющей нулевой последовательности. Это справедливо и для линейных напряжений трехфазной системы, сумма которых тоже равна нулю.
Рис. 21.10. Симметричные составляющие токов трехфазной цепи при разомкнутых двух фазах
Отсутствие тока в одной или двух фазах при несимметричном режиме означает, что сумма трех симметричных составляющих токов в этих фазах равна нулю.
Например, на схеме рис. 21.10, а фазы В и С разомкнуты. Поэтому
Согласно формулам (21.14) — (21.16), симметричные составляющие токов имеют следующие выражения:
прямой последовательности
обратной последовательности
нулевой последовательности
На рис. 21.10, б показаны симметричные составляющие прямой, обратной и нулевой последовательности и их геометрическое сложение; в результате сложения получаем:
Задача 21.8.
В результате неправильной маркировки концов обмоток трехфазного трансформатора (начало фазы А вторичной обмотки помечено как конец) система линейных напряжений несимметрична. Определить симметричные составляющие линейных напряжений при соединении звездой, если фазные напряжения во вторичной обмотке 220 В.
Решение. Запишем комплексы фазных напряжений во вторичной обмотке:
Вектор напряжения в соответствии с условием задачи повернут на 180°.
Комплексы линейных напряжений:
Составляющие:
нулевой последовательности
прямой последовательности
обратной последовательности
Рис. 21.11. К задаче 21.8
На рис. 21.11, а, б показаны векторы систем прямой и обратной последовательности и их сумма — система трех исходных векторов линейных напряжений.
Задача 21.9.
Трехфазный электродвигатель, включенный в сеть с линейным напряжением 380 В при соединении звездой, имеет мощность на валу Р2 = 14 кВт; соsφ = 0,8; к. п. д. η = 0,85.
Определить симметричные составляющие токов в обмотке двигателя при обрыве линейного провода в фазе В.
Решение. При нормальной работе ток в фазе двигателя
При симметричной системе напряжений токи в фазах двигателя образуют симметричную систему (рис. 21.12, а). При обрыве линейного провода В векторная диаграмма фазных напряжений и токов показана на рис. 21.12, б.
Ток в фазах В равен нулю (IB = 0).
Токи в фазах А и С равны по величине, но находятся в противофазе: IА = IC.
Для определения величины токов IА и IC найдем расчетное сопротивление фазы двигателя при нормальном режиме, которое будем считать неизменным:
При обрыве линейного провода фазы В обмотки двух других фаз двигателя с одинаковым сопротивлением включены последовательно на линейное напряжение UCA. Поэтому ток в фазах А и С
Рис. 21.12. к задаче 21.9
Выразим токи в комплексной форме, полагая ток IA совпадающим с положительным направлением действительной оси:
Токи:
нулевой последовательности
прямой последовательности
обратной последовательности
На рис. 21.12, в изображены симметричные составляющие токов в двигателе при обрыве фазы.
Несимметричный режим работы трехфазной цепи
Несимметрия в трехфазной цепи может быть вызвана различными причинами: 1) неодинаковым сопротивлением фаз (несимметричная нагрузка); 2) несимметричным коротким замыканием (например, между двумя фазами или фазой и нейтралью); 3) размыканием фазы; 4) неравенством э. д. с. и т. п.
Расчет токов и напряжений в трехфазной цепи при несимметричном режиме может производиться теми же
методами, которые применяются для расчета однофазных цепей.
Рассмотрим несколько простейших вариантов (без взаимной индукции между фазами).
1. Несимметричная трехфазная цепь, соединенная звездой, с нейтральным проводом (рис. 12-13).
Несимметричная трехфазная цепь, показанная на рис. 12-13, может рассматриваться как трехконтурная цепь с тремя э. д. с. Такая цепь может быть рассчитана методами контурных токов, узловых напряжений и другими. Поскольку в схеме имеются только два узла, наиболее целесообразно в данном случае определить узловое напряжение (напряжение смещения) между нейтральными точками N’ и N по формуле,
где — проводимости соответствующих ветвей.
После этого найдем токи:
В симметричной трехфазной цепи и поэтому при узловое напряжение равно нулю.
Стучаю размыкания какой-либо фазы или нейтрального провода соответствует равенство нулю проводимости данной фазы или нейтрального провода. j
При отсутствии нейтрального провода, полагая в (12-1), имеем:
2. Несимметричная трехфазная нагрузка, соединенная звездой (без нейтрального провода), с заданными линейными напряжениями на выводах (рис. 12-14).
Если заданы линейные напряженияна выводах нагрузки, соединенной звездой, то токи в фазах звезды определяются следующим образом.
Обозначив фазные напряжения на выводах нагрузки через(рис. 12-14), получим
где — проводимости фаз нагрузки.
Равенство нулю суммы токов трех фаз записывается в виде:
Фазные напряжения могут быть выражены через и заданные линейные напряжения:
Подстановка (12-3) в (12-2) дает:
Круговой заменой индексов (с порядком следования АВСА и т. д.) находятся:
По фазным напряжениям нагрузки находятся фазные токи.
В Случае симметричной нагрузки вектор фазного напряжения равен одной трети диагонали параллелограмма, построенного на соответствующих линейных напряжениях. Фазные напряжения в этом случае определяются векторами, соединяющими центр тяжести треугольника напряжений (точка пересечения медиан) с вершинами треугольника.
На рис. 12-15 построение сделано для фазы А по формуле (12-4)1
В качестве примера рассмотрим схему фазоуказателя, используемую для определения чередования фаз по времени, состоящую из конденсатора и двух одинаковых электрических ламп, соединенных звездой.
Положим, что конденсатор присоединен к фазе А, лампы — к фазам В и С; емкостное сопротивление конденсатора берется равным по модулю сопротивлению лампы, т. е. причем
Неравенство напряжений на лампах проявится в том, что накал ламп будет разным.
1 Для определения чередования фаз на практике обычно пользуются специальным прибором, в котором создается вращающееся магнитное поле, увлекающее за собой диск в ту или другую сторону.
Отношение напряжений согласно выведенным выше выражениям (12-4) равно при симметрии линейных напряжений:
Следовательно, лампа, присоединенная к фазе В (т. е. к фазе, опережающей ту, к которой присоединена вторая лампа), будет светить ярко, а лампа, присоединенная к отстающей фазе, — тускло.
Вместо конденсатора можно применить индуктивную катушку, подобрав ее индуктивное сопротивление приблизительно равным по модулю сопротивлению лампы. В этом случае ярче будет светить лампа, присоединенная к отстающей фазе. Эти соотношения также могут быть получены непосредственно из векторной диаграммы.
3. Несимметричная трехфазная нагрузка, соединенная треугольником, с заданными напряжениями на выводах Рис. 12-16. Несимметричная (рис. 12-16). Если на выводах несимметричной трехфазной нагрузки, соединенной треугольником, заданы линейные напряжения (рис. 12-16), то токи в сопротивлениях нагрузки равны:
Токи в линии определяются как разности соответствующих токов нагрузки, например: и т. д.
Если на выводах несимметричной трехфазной нагрузки, соединенной треугольником, заданы фазные напряжения источника, соединенного в звезду, то линейные напряжения на выводах нагрузки находятся как разности соответствующих фазных напряжений, в результате чего задача сводится к только что рассмотренному случаю(рис. 12-16).
Пример 12-2. Сопротивления фаз нагрузки, соединенной звездной
Сопротивление нейтрального провода
Напряжения на цепи представляют собой симметричную звезду:
Требуется определить фазные напряжения нагрузки.
Проводимости фаз нагрузки и нейтрального провода
На основании формулы (12-1)
Искомые фазные напряжения нагрузки:
Мощность несимметричной трехфазной цепи
Пользуясь комплексной формой записи мощности, можно написать общее выражение для мощности трехфазной цепи:
Действительная часть этого выражения представляет собой активную мощность
Суммарная активная мощность, потребляемая несимметричной трехфазной цепью, может быть в соответствии с этим измерена при помощи трех ваттметров, включенных на подведенные к данной цепи фазные напряжения относительно нейтрали и одноименные с ними токи. Активная мощность равна сумме показаний трех ваттметров. Такой метод измерения применяется при наличии нейтрального провода (рис. 12-17) или искусственно созданной нейтральной точки.
В случае отсутствия нейтрального провода измерение может быть произведено с помощью двух ваттметров
(рис. 12-18). В этом случае выражение (12-5) преобразуется следующим образом: исключая ток с помощью условия
получаем:
или
В соответствии с (12-6) при измерении активной мощности двумя ваттметрами к одному из них подводятся напряжение и ток а ко второму — напряжение и ток (рис. 12-18, а). Показания ваттметров складываются алгебраически.
Круговой заменой А, В. и С в выражении (12-6) можно получить выражения для других равноценных вариантов включения двух ваттметров.
Следует иметь в виду’, что если стрелка одного ваттметра отклоняется по шкале в обратную сторону, то, изменив направление напряжения или тока, подводимого к данному ваттметру, записывают полученное показание со знаком минус. При симметричном режиме работы трехфазной цепи такое положение имеет место при
что видно непосредственно из векторной диаграммы (рис. 12-18, б).
При симметричном режиме показания двух ваттметров в схеме рис. 12-18, б будут следующие:
Сумма и разность показаний ваттметров соответственно равны:
Следовательно, при симметричном режиме работы трехфазной цепи тангенс угла сдвига фаз может быть вычислен по формуле
- Вращающееся магнитное поле
- Электрические цепи синусоидального тока
- Электрические цепи несинусоидального тока
- Несинусоидальный ток
- Метод симметричных составляющих
- Цепи периодического несинусоидального тока
- Резонанс токов
- Трехфазные симметричные цепи
НЕСИММЕТРИЧНЫЙ РЕЖИМ ТРЕХФАЗНОЙ ЦЕПИ
Несимметричный режим возникает при неодинаковых сопротивлениях (как по величине, так и по характеру) нагрузки. В городских электрических сетях особо опасным является обрыв нулевого провода при неравенстве сопротивлений в фазах.
На рис. 1 показана в упрощенном виде схема питания электроприемников линии напряжением 0,4 кВ. Линия подключена ко вторичной обмотке силового трансформатора Т, соединенной в Y.
Рис. 1. Упрощенная схема питания электроприемников линии напряжением 0,4 кВ с оборванным нулевым проводом
Пусть суммарные проводимости нагрузки в фазах приемников не равны между собой:
Суммарные проводимости в фазах вычисляются как суммы проводимостей нагрузки по всем участкам линии, например,
где YHB1, YHB2, … — полные проводимости нагрузок Н1, Н2,… в фазе В.
Примем для простоты, что все проводимости в фазах имеют одинаковый характер, т. е. cos φA = cos φв = cos φс = cos φ. Тогда при обрыве нулевого провода напряжение на его концах равно
где ÚA, ÚB, ÚC — векторы фазных напряжений источника питания.
Векторная диаграмма напряжений одного из случаев при обрыве нулевого провода приведена на рис. 2.
Рис. 2. Векторная диаграмма напряжений при обрыве нулевого провода
В сетях напряжением 0,4 кВ часто встречается случай, когда при коротком замыкании фазного и нулевого проводов предохранитель не срабатывает, а перегорает нулевой провод, например, в месте его присоединения к нейтрали трансформатора (рис. 3, а).
Рис. 3. Обрыв нулевого провода при КЗ
Векторная диаграмма напряжений в этом случае имеет вид, изображенный на рис. 3б. Хотя звезда фазных напряжений трансформатора симметрична, напряжения у приемников существенно отличаются от нормальных. В рассматриваемом случае на приемники, подключенные к фазе А, напряжение не подается, т. к. провод этой фазы соединен с нулевым проводом, а фазы В и С оказываются под линейным напряжением 0,4 кВ. Очевидно, что однофазные приемники этих фаз будут повреждаться, поскольку, по сравнению с нормальным режимом, напряжения на них увеличились в √3 ≈ 1,73 раз.
Следует подчеркнуть, что симметрирование нагрузок исключает появление недопустимых напряжений у однофазных приемников при обрыве нулевого провода без КЗ фазного и нулевого проводов. Однако в случае короткого замыкания фазного и нулевого проводов, при отказе предохранителя и перегорании вместо последнего в каком-либо месте нулевого провода исключить повреждение однофазных приемников нельзя.
Поэтому правильный выбор предохранителей (и автоматов) снижает вероятность повреждений однофазных приемников при обрыве нулевого провода.
Поделитесь ссылкой в социальных сетях
Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно,
все рассмотренные ранее методы расчета и анализа в символической форме в полной
мере распространяются на них. Анализ трехфазных систем удобно осуществлять с
использованием векторных диаграмм, позволяющих достаточно просто определять
фазовые сдвиги между переменными. Однако определенная специфика многофазных
цепей вносит характерные особенности в их расчет, что, в первую очередь, касается
анализа их работы в симметричных режимах.
Расчет симметричных режимов работы трехфазных систем
Многофазный приемник и вообще многофазная цепь называются симметричными,
если в них комплексные сопротивления соответствующих фаз одинаковы, т.е.
если . В противном случае они являются
несимметричными. Равенство модулей указанных сопротивлений не является
достаточным условием симметрии цепи. Так, например трехфазный приемник на рис.
1,а является симметричным, а на рис. 1,б – нет даже при условии: .
Если к симметричной трехфазной цепи приложена симметричная трехфазная система
напряжений генератора, то в ней будет иметь место симметричная система токов.
Такой режим работы трехфазной цепи называется симметричным. В этом режиме
токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг
по отношению к другу на угол . Вследствие указанного расчет
таких цепей проводится для одной – базовой – фазы, в качестве которой
обычно принимают фазу А. При этом соответствующие величины в других фазах получают
формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.
Так для симметричного режима работы цепи на рис. 2,а при известных линейном
напряжении и сопротивлениях фаз можно записать
,
где
определяется характером нагрузки .
Тогда на основании вышесказанного
;
.
Комплексы линейных токов можно найти с использованием векторной диаграммы на
рис. 2,б, из которой вытекает:
При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется
с помощью двух основных приемов:
Все треугольники заменяются эквивалентными звездами. Поскольку треугольники
симметричны, то в соответствии с формулами преобразования «треугольник-звезда»
.
Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы
их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи
их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется
базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам
которого определяются соответствующие величины в других фазах.
Пусть, например, при заданном фазном напряжении необходимо определить линейные
токи и в схеме на рис. 3, все сопротивления
в которой известны.
В соответствии с указанной методикой выделим расчетную фазу А, которая представлена
на рис. 4. Здесь , .
Тогда для тока можно записать
,
и соответственно .
Расчет несимметричных режимов работы трехфазных систем
Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет
место несимметричный режим работы. Такие режимы при наличии в цепи только статической
нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для
всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные
напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить,
что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес
также потенциалы узлов, чаще других для расчета сложных схем применяется метод
узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей
с электрическими машинами в основном применяется метод симметричных составляющих,
который будет рассмотрен далее.
При заданных линейных напряжениях наиболее просто рассчитываются трехфазные
цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах
линейных напряжений в соответствии с законом Ома
; ; .
По найденным фазным токам приемника на основании первого закона Кирхгофа определяются
линейные токи:
.
Обычно на практике известны не комплексы линейных напряжений, а их модули.
В этом случае необходимо предварительное определение начальных фаз этих напряжений,
что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений,
строим треугольник (см. рис.5), из которого (путем замера) определяем значения
углов a и b.
Тогда
Искомые углы a и b могут быть также найдены аналитически
на основании теоремы косинусов:
При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода
с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям
на фазах источника. В этом случае фазные токи легко определяются по закону Ома,
т.е. путем деления известных напряжений на фазах потребителя на соответствующие
сопротивления. Однако, если сопротивление нейтрального провода велико или он
отсутствует, требуется более сложный расчет.
Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной
нагрузке ей в общем случае будет соответствовать
векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки
источника и приемника занимают разные положения, т.е. .
Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением
смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения
нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке,
что наглядно иллюстрирует векторная диаграмма на рис. 6,б.
Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали.
Если оно известно, то напряжения на фазах нагрузки равны:
.
Тогда для искомых токов можно записать:
.
Соотношение для напряжения смещения нейтрали, записанное на основании метода
узловых потенциалов, имеет вид
. | (1) |
При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального
провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .
В качестве примера анализа несимметричного
режима работы цепи с использованием соотношения (1) определим, какая из ламп
в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если
.
Запишем выражения комплексных сопротивлений фаз нагрузки:
Тогда для напряжения смещения нейтрали будем иметь
Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника
опускается)
Таким образом, наиболее ярко будет гореть лампочка в фазе С.
В заключение отметим, что если при соединении в звезду задаются линейные напряжения
(что обычно имеет место на практике), то с учетом того, что сумма последних
равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например,
и . Тогда, поскольку при этом , соотношение (1) трансформируется
в формулу
. | (2) |
Литература
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил,
С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. - Бессонов Л.А. Теоретические основы электротехники: Электрические
цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных
специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
- Какой многофазный приемник является симметричным?
- Какой режим работы трехфазной цепи называется симметричным?
- В чем заключается специфика расчета симметричных режимов работы трехфазных
цепей? - С помощью каких приемов трехфазная симметричная схема сводится к расчетной
однофазной? - Что такое напряжение смещения нейтрали, как оно определяется?
- Как можно определить комплексы линейных напряжений, если заданы их модули?
- Что обеспечивает нейтральный провод с нулевым сопротивлением?
- В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380
В. - В схеме предыдущей задачи ; . Остальные параметры те же.
- В задаче 8 нейтральный провод оборван.
- В задаче 9 нейтральный провод оборван.
Определить ток в нейтральном проводе.
Ответ: .
Определить ток в нейтральном проводе.
Ответ: .
Определить фазные напряжения на нагрузке.
Ответ: ; ; .
Определить фазные напряжения на нагрузке.
Ответ: ; ; .