В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей. В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.
В каком режиме работает трансформатор тока
Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.
Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.
Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.
В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.
Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.
Особенности работы трансформатора тока в разных условиях:
- Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
- Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.
В каком режиме работает измерительный трансформатор напряжения
Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.
С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.
Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.
Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.
Трансформаторам
тока приходится работать в различных
режимах, имеющих место в электрической
цепи, а именно в установившемся и
переходном режимах.
Установившимся
называют режим работы ТТ, при котором
токи в первичной и вторичной обмотках
ТТ не содержат затухающих свободных
апериодических и периодических
составляющих. Одним из видов
установившегося режима является
нормальный режим работы ТТ, при
котором первичный и вторичный токи,
погрешности различных видов и напряжения
между обмотками ТТ не превышают
длительно допустимых при заданных
условиях эксплуатации. К установившимся
режимам относится также трансформация
тока короткого замыкания или другого
тока; отличающегося от нормального
рабочего тока установки, после затухания
свободных составляющих.
Переходным
режимом работы ТТ называют электромагнитный
процесс, возникающий при переходе от
одного режима к другому вследствие
резкого изменения параметров первичного
тока или нагрузки ТТ (например, при
коротком замыкании или коммутациях в
первичной цепи либо при внезапном
замыкании накоротко ветви вторичного
тока). При переходном режиме по первичной
и вторичной обмоткам ТТ проходят
свободные затухающие составляющие
токов.
При правильном
выборе ТТ токи в его обмотках ни при
установившихся, ни при переходных
режимах не должны превышать допустимые
по термической и динамической стойкости.
При этом погрешности различных видов
также не должны быть больше допустимых
в этих режимах погрешностей.
СПИСОК ЛИТЕРАТУРЫ:
-
Трансформаторы
тока. Под ред. В.В. Афанасьев и.др. М:
Энергия 1989 -
Бачурин Н.И.
Трансформаторы тока. М.: Энергия, 1964 -
Вовин В.Н.
Трансформаторы тока. М.: Энергия, 1966 -
Кибель В.М.
Трансформаторы напряжения. М.: Энергия
1975
22
Соседние файлы в предмете Электрические машины
- #
- #
- #
02.05.2014163.49 Кб45Программа расчёта ветрогенератора [mcd].mcd
- #
- #
- #
- #
- #
- #
- #
- #
02.05.201484.64 Кб89Чертеж двигателя 4А250.dwg
Трансформаторы. Режимы работы
Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.
Режимы работы трансформатора
Существует пять характерных режимов работы трансформатора:
- Рабочий режим;
- Номинальный режим;
- Оптимальный режим;
- Режим холостого хода;
- Режим короткого замыкания;
Рабочий режим
Режим характеризуется следующими признаками:
- Напряжение первичной обмотки близко к номинальному значению или равно ему (dot{u}_1 ≈ dot{u}_{1ном});
- Ток первичной обмотки меньше своего номинального значения или равен ему (dot{i}_1 ≤ dot{i}_1ном).
В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.
Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.
Номинальный режим работы
Характерные признаки режима:
- Напряжение первичной обмотки равно номинальному (dot{u}_1 = dot{u}_{1ном});
- Ток первичной обмотки равен номинальному (dot{i}_1 = dot{i}_{1ном}).
Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.
Оптимальный режим работы
Режим характеризуется условием:
begin{equation}
k_{нг} = sqrt{P_{хх}over P_{кз}}
end{equation}
Где (P_{хх}) — потери холостого хода;
(P_{кз}) — потери короткого замыкания;
(k_{нг}) — коэффициент нагрузки трансформатора, определяемый по формуле:
begin{equation}
k_{нг} = {I_2over I_{2ном}}
end{equation}
Где (P_2) — ток нагрузки вторичной обмотки;
(P_{2ном}) — номинальный ток вторичной обмотки.
В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри «Трансформаторы. Оптимальный режим работы»).
Режим холостого хода
Характерные признаки режима:
- Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки(1) трансформатора;
- К первичной обмотке приложено напряжение (dot{u}_{1хх} = dot{u}_{1ном});
- Ток вторичной обмотки (dot{i}_2 ≈ 0) (для трехфазного трансформатора — (dot{i}_{2ф} ≈ dot{i}_{2л} ≈ 0).
На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 — трехфазного двухобмоточных трансформаторов.
Рисунок 1 — Схема опыта холостого хода однофазного двухобмоточного трансформатора
Рисунок 2 — Схема опыта холостого хода трехфазного двухобмоточного трансформатора
По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока (i_х), мощности (ΔQ_хх) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри «Опыт холостого хода трансформатора»).
- Под сопротивлением номинальной нагрузки обмотки понимается величина (R_{Нном}), равная отношению номинального напряжения обмотки (U_{ном}) к её номинальному току обмотки (I_{ном})
Примечание:
Режим короткого замыкания
Режим короткого замыкания характеризуется:
- Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
- К первичной обмотке приложена такая величина напряжения (dot{u}_1), что ток первичной обмотки равен её номинальному току (dot{i}_1 = dot{i}_{1ном})
- Напряжение вторичной обмотки (dot{u}_2 = 0) (для трехфазного трансформатора — (dot{u}_{2ф} = dot{u}_{2л} = 0).
Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 — для трехфазного двухобмоточных трансформаторов.
Рисунок 3 — Схема опыта короткого замыкания однофазного двухобмоточного трансформатора
Рисунок 4 — Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора
Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения (u_к), мощности (ΔP_кз) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри «Опыт короткого замыкания трансформатора»).
Список использованных источников
- Бессонов, Л.А. Теоретические основы электротехники: учебник / Л.А. Бессонов — Москва: Высшая школа, 1996 — 623 с.
- Вольдек, А.И. Электрические машины: учебник для студентов вузов / А.И. Вольдек — СПб.: Энергия, 1978 — 832 с.
- Касаткин А.С. Электротехника: учебное пособие для вузов / А.С. Касаткин, М.В. Немцов — Москва: Энергоатомиздат, 1995 — 240 с.
30.11.2021
Трансформаторы за время эксплуатации работают в разных режимах. Но не все они одинаково сказываются на сроке службы электромагнитного оборудования. Режимы работы силового трансформатора зависят от его нагрузки, напряжения обмоток, температуры масла и обмоток, условий окружающей среды и других параметров.
Режимы работы трансформатора:
- нормальный;
- перегрузочный;
- аварийный.
Нормальные режимы работы трансформатора
К ним относятся номинальный, оптимальный, режим холостого хода и режим параллельной работы.
Номинальный и оптимальный режим
Еще эти режимы трансформатора называют рабочими. Потому что при них напряжение и ток близки к номинальным (на которые рассчитано оборудование) условиям.
Номинальный режим – это когда ток и напряжение на первичной обмотке соответствуют номинальным показателям. Но на деле трансформатор редко работает в таких условиях. Потому что в сети происходят постоянные колебания нагрузки. При таком режиме трансформатор работает исправно. Но коэффициент полезного действия (КПД) оборудования не достигает максимума.
Оптимальный режим – это режим, при котором трансформатор имеет максимальный КПД. Как правило, максимальные КПД трансформатор показывает под нагрузкой 50-70% от номинальной. Современные силовые трансформаторы работают с КПД 90% и выше.
На деле большинство трансформаторов не работают в одном и том же режиме. Потому что нагрузка в сети непостоянная.
Холостой режим трансформатора
При режиме холостого хода на первичную обмотку трансформатора поступает напряжение, а вторичная обмотка не подключена к сети потребителя электроэнергии. В таком режиме КПД равен 0.
На холостом ходу силового трансформатора определяют коэффициент трансформации, мощность потерь в металле и параметры намагничивающей ветви схемы замещения. Для таких измерений на первичную обмотку трансформатора пускают электрический ток номинального напряжения.
А для трансформатора напряжения режим холостого хода является рабочим.
Режим параллельной работы
Два трансформатора устанавливаются в сетях, питающих энергией потребителей первой и второй категории. Важно подключить трансформаторы так, чтобы ни один из них не испытывал перегрузки.
Для этого у трансформаторов:
- должны быть одни и те же группы соединений обмоток;
- коэффициенты трансформации не должны отличаться больше, чем на 0,5 %;
- номинальные мощности должны соотноситься не более, чем один к трем;
- напряжения короткого замыкания должны различаться не более, чем на 10 %;
- должна выполняться фазировка трансформаторов.
Перегрузочный режим
Трансформатор испытывает перегрузки при воздействии нагрузок и температур выше допустимой нормы. Для каждой модели эти показатели свои. Производители силовых трансформаторов предусматривают возможность работы оборудования в условиях перегрузки. Но если устройство испытывает их продолжительное время или регулярно – это уменьшает срок службы оборудования. Допустимые перегрузки описаны в стандартах. Например, для масляных трансформаторов разработан ГОСТ 14209-97.
Аварийный режим
Трансформатор находится в аварийном режиме, если на него воздействует электрический ток, который сильно превосходит номинальные величины. Дальше давать работать оборудованию нельзя. Как правило, в трансформаторах существуют автоматические выключатели. Они отключают питание оборудования.
Признаки аварийного режима:
- громкий и неритмичный шум и треск в баке трансформатора;
- повышение температуры рабочей части трансформатора;
- утечка трансформаторного масла.
Часто аварийный режим возникает из-за короткого замыкания во вторичной обмотке. Исключение – трансформаторы тока и сварочные трансформаторы. Для них режим короткого замыкания является рабочим.
Напряжение во время короткого замыкания (КЗ) – это еще и важный показатель, который влияет на эксплуатацию трансформатора. Его измеряют в процентах. Для трансформаторов со средним показателем мощности напряжение КЗ составляет 5-7%, а для более мощных – 6-12 %.
Важно не допускать работы трансформатора в аварийном режиме вообще и ограничивать его перегрузки. В этом случае оборудование прослужит вам заявленный производителем срок.
Режимы работы трансформаторов
7. РЕЖИМЫ РАБОТЫ ТРАНСФОРМАТОРОВ
7.1. Нормальные режимы
7.1.1. Нормальными режимами работы считаются такие, на которые рассчитан трансформатор и при которых он может длительно работать при допустимых стандартами или техническими условиями отклонениях основных параметров (напряжение, ток, частота, температура отдельных элементов) и нормальных условиях работы (климат, высота установки над уровнем моря).
Номинальные значения основных параметров трансформатора указаны на его щитке и в паспорте.
7.1.2. Эксплуатация трансформатора допускается только при условии защиты его обмоток вентильными разрядниками или ограничителями перенапряжения, постоянно подключенными к обмоткам согласно требований “Правил устройства электроустановок”.
7.1.3. Неиспользуемые обмотки стороны НН (СН) трехобмоточного трансформатора при эксплуатации должны быть соединены в треугольник. При этом все три фазы должны быть защищены вентильными разрядниками или ограничителями перенапряжения соответствующего класса напряжения.
7.1.4. Нейтрали обмоток высшего напряжения трансформаторов напряжением 110 кВ, с неполной изоляцией со стороны нейтрали, должны быть заземлены наглухо, за исключением случаев, обусловленных в п.7.1.5. Трансформаторы напряжением до 35 кВ могут работать с изолированной нейтралью, заземленной через дугогасящую катушку (дугогасительный реактор).
При суммарном токе дугогасящих катушек более 100 А присоединять их к одному трансформатору следует по согласованию с заводом – изготовителем.
7.1.5. Допускается работа трансформаторов напряжением 110кВ, которые имеют испытательное напряжение нейтрали 110кВ с разземленной нейтралью при условии присоединения к выводу нейтрали вентильного разрядника соответствующего класса изоляции. В этом случае необходимо принять соответствующие меры (при помощи устройств релейной защиты и автоматики, оперативные мероприятия и др.), которые бы исключали бы вероятность работы трансформатора в нормальном режиме на участок сети с изолированной нейтралью.
Работа с разземленной нейтралью трансформаторов на напряжение 110 кВ с испытательным напряжением нейтрали 85 кВ допускается при обосновании необходимыми расчетами.
7.1.6. Длительная работа трансформатора допускается при мощности не более номинальной при превышении напряжения, подводимого к любому ответвлению обмотки ВН, СН и НН, на 10 % сверх номинального напряжения данного ответвления обмотки.
При этом напряжение на какой – либо обмотке трансформатора на должно превышать наибольшего рабочего напряжения для данного класса напряжения, указанного в таблице 7.1.
Таблица 7.1 – Наибольшее рабочее напряжение
Класс напряжения | Наибольшее рабочее напряжение, кВ |
6 | 7,2 |
10 | 12,0 |
35 | 40,5 |
110 | 126 |
7.1.7. Допускается длительная работа трансформатора, оборудованных устройством РПН с нагрузкой, которая равна номинальной мощности его обмоток на всех ответвлениях, кроме отдельных ответвлений обмотки ниже минус 5 % номинальной мощности.
Во время работы на ответвлениях ниже минус 5 % номинального напряжения мощность обмотки должна соответствовать неизменному для всех этих ступеней току ответвления ступени РПН минус 5 % номинального напряжения, а при отсутствии такого ответвления — ближайшему большему току (например, при диапазоне ± (6 х 2) % — номинальному току ответвления минус (3 х 2) %).
7.1.8. Допускается длительная перегрузка одной или двух обмоток трансформатора током, превышающим на 5 % номинальный ток ответвления, на которое включена соответствующая обмотка, если напряжение ни на одной из обмоток не превышает номинального напряжения соответствующего ответвления.
При этом для обмотки с ответвлением нагрузка не должна превышать 1,05 номинального тока ответвления, если напряжение на нем не превышает номинальное. Ток в общей обмотке трансформатора не должен превышать значения, указанного в паспорте.
7.1.9. Трехобмоточный трансформатор допускает любое распределение продолжительных нагрузок по его обмоткам при условии, что ни одна из трех обмоток не будет нагружена током, превышающим допустимый согласно 7.1.8.
7.1.10. Для трансформаторов с расщепленной обмоткой допускаются такие же перегрузки каждой ветви, отнесенные к ее номинальной мощности, как и для трансформаторов с нерасщепленной обмоткой.
Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются по согласованию с заводом – изготовителем.
7.1.11. В случае неравномерной нагрузки трансформатора по фазам значения перегрузок относятся к наиболее нагруженной обмотке наиболее нагруженной фазы.
7.1.12. Допустимые перегрузки трансформаторов с охлаждением вида “Д” при отключенных вентиляторах определяется по отношению к мощности (согласно с паспортом трансформатора), которую они имеют без дутья. (с охлаждением “М”).
7.1.13. Работа трансформаторов с охлаждением вида “Д” с отключенным дутьем допускается при следующих условиях:
- если нагрузка менее номинальной и температура верхних слоев масла не превышает плюс 55 °С;
- при минусовых температурах окружающего воздуха и при температуре верхних слоев масла не выше плюс 45 °С (вне зависимости от нагрузки).
7.1.14. Температура верхних слоев масла при нормальной нагрузке трансформатора и реактора и максимальной температуре охлаждающей среды (среднесуточная температура охлаждающего воздуха 30 °С) не должна превышать 95 °С для трансформаторов с охлаждением вида “М” и “Д”.
Температура верхних слоев масла трансформаторов зарубежного производства не должна превышать значений, указанных фирмой – производителем, а при их отсутствии — значений, установленных на основании тепловых испытаний либо данной инструкции.
Превышение указанного значения температуры свидетельствует о неисправности трансформатора, которую необходимо выявить и устранить.
7.1.15. Допускается параллельная работа двух — и трехобмоточных трансформаторов на всех обмотках, а также двухобмоточных с трехобмоточными, если ни одна из обмоток параллельно включенных трансформаторов не нагружена более ее допустимой нагрузочной способности. Параллельная работа трансформаторов с соотношением номинальных мощностей более трех не рекомендуется.
Условия параллельной работы трансформаторов:
- номинальные напряжения и коэффициенты трансформации обмоток должны быть одинаковыми. Допускаются различия для трансформаторов с коэффициентом трансформации меньше или равным 3 в пределах ± 1 %; для всех остальных — ± 0,5 %.
- значения напряжения короткого замыкания не должны отличаться более чем на ±10 %;
- группы соединения трансформаторов должны быть одинаковыми.
7.2. Нагрузочные режимы трансформаторов
7.2.1. В зависимости от характера суточного или годового графика нагрузки и температуры охлаждающей среды допускаются систематические и аварийные перегрузки трансформатора.
Допустимые систематические перегрузки превышают номинальную нагрузку трансформатора, однако они не вызывают сокращение срока его службы, так как при этом износ витковой изоляции не превышает нормального.
Допустимые аварийные перегрузки трансформатора вызывают повышенный, в сравнении с нормальным, износ витковой изоляции, что может привести к сокращению установленного срока службы трансформатора, если повышенный износ со временем не будет компенсирован нагрузкой с износом витковой изоляции ниже нормального.
7.2.2. Значения и длительность допустимых систематических и аварийных перегрузок определяются для прямоугольного двухступенчатого или многоступенчатого графика нагрузки, в которые должны быть преобразованы фактические графики нагрузок согласно с ГОСТ 14209 – 97, а для сухих трансформаторов – согласно с ДСТУ 2767 – 94.
Параметры реального графика нагрузки определяются по данным измерительных приборов, которыми оснащен трансформатор.
Нагрузка трансформатора сверх его номинальной мощности допускается только при исправной и полностью включенной системе охлаждения трансформатора.
7.2.3. Допустимые перегрузки трансформаторов, изготовленных по ГОСТ 401 – 41 устанавливаются по ГОСТ 14209 – 69, но эквивалентная температура принимается на 5 °С выше расчетной для данной местности. Не допускаются перегрузки этих трансформаторов при среднесуточной температуре охлаждающего воздуха выше 30 °С.
7.2.4. При определении допустимых систематических перегрузок температуру охлаждающей среды за период действия графика нагрузки принимают такой, которая равна среднему значению, если при этом температура положительная и не изменяется более чем на 12 °С. Если температура охлаждающей среды изменяется более чем на 12 °С или если значение температуры охлаждающей среды отрицательное, необходимо использовать эквивалентные значения температуры, рассчитанные согласно с ГОСТ 14209 – 97.
При определении допустимых нагрузок температуру охлаждающей среды принимают согласно с ее измеренным значением во время возникновения аварийной перегрузки.
7.2.5. Для трехобмоточного трансформатора допустимые перегрузки определяют для наиболее нагруженной фазы наиболее нагруженной обмотки.
7.2.6. Для суточного двухступенчатого прямоугольного графика нагрузки допустимые систематические нагрузки и аварийные перегрузки масляного трансформатора определяют согласно ГОСТ 14209 – 97, а для сухого трансформатора – согласно ДСТУ 2767 – 94.
7.2.7. Допустимые по величине и продолжительности аварийные перегрузки трансформатора указаны в приложении Е.
7.2.8. Граничные значения параметров, которые контролируются во время эксплуатации и ограничивают допустимые и аварийные перегрузки трансформаторов, приведены в таблице 7.2.
Таблица 7.2 — граничные значения температуры и тока для режимов нагрузки трансформаторов, которая не превышает номинальную
Тип нагрузки | Трансформаторы мощностью до 2,5 МВ*А | Трансформаторы средней мощностью до 100 МВ*А |
Номинальный режим систематических нагрузок: — ток, отн. ед., — температура наиболее нагретой точки и | 1,5 | 1,5 |
металлических частей, которые прилегают к изоляционным материалам, °С | 140 | 140 |
— температура масла в верхних слоях, °С | 105 | 105 |
Режим систематических длительных аварийных перегрузок: — ток, отн. ед., | 1,8 | 1,5 |
— температура наиболее нагретой точки и металлических частей, которые прилегают к изоляционным материалам, °С | 150 | 140 |
— температура масла в верхних слоях, °С | 115 | 115 |
Режим систематических длительных аварийных перегрузок: — ток, отн. ед., | 2,0 | 1,8 |
— температура наиболее нагретой точки и металлических частей, которые прилегают к изоляционным материалам, °С | 160 | 160 |
— температура масла в верхних слоях, °С | 115 | 115 |
7.2.9. Относительный износ витковой изоляции трансформатора при необходимости следует определять согласно ГОСТ 14209 – 97.
При определении относительного износа витковой изоляции необходимо применять коэффициент f, значения которого приведены в ГОСТ 14209 – 97.
- Следующая страница
- Предыдущая страница
- Содержание
Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.
Конструкция и принцип действия
Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.
Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).
Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.
В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).
Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).
Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.
Принцип действия.
Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.
Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .
Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.
На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.
Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.
В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.
На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.
Классификация
Семейство трансформаторов тока
классифицируют по нескольким признакам.
- По назначению:
- защитные;
- линейки измерительных трансформаторов тока;
- промежуточные (используются для выравнивания токов в системах дифференциальных защит);
- лабораторные.
- По способу монтажа:
- наружные (см. рис. 8), применяются в ОРУ;
- внутренние (размещаются в ЗРУ);
- встраиваемые;
- накладные (часто совмещаются с проходными изоляторами);
- переносные.
- Классификация по типу первичной обмотки:
- многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
- одновитковые;
- шинные.
- По величине номинальных напряжений:
- До 1 кВ;
- Свыше 1 кВ.
Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.
Расшифровка маркировки
Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:
- Т — трансформатор тока;
- П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
- В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
- ВТ — встроенный в конструкцию силового трансформатора;
- Л— со смоляной (литой) изоляцией;
- ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
- Ф — с надежной фарфоровой изоляцией;
- Ш — шинный;
- О — одновитковый;
- М — малогабаритный;
- К — катушечный;
- 3 — применяется для защиты от последствий замыкания на землю;
- У — усиленный;
- Н — для наружного монтажа;
- Р — с сердечником, предназначенным для релейной защиты;
- Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
- М — маслонаполненный. Применяется для наружной установки.
- Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
- Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
- следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
- после позиции дробных символов — код варианта конструкционного исполнения;
- буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
- цифра на последней позиции — категория размещения.
Схемы подключения
Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.
Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.
При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.
Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.
Схема «неполная звезда» применяется для двухфазного соединения.
В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.
Основные схемы подключения:
- В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
- Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
- Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
- Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.
Технические параметры
Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.
Коэффициент
трансформации
Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.
У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.
Класс точности
Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:
- 0,1;
- 0,5;
- 1;
- 3;
- 10P.
Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.
О назначении
Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.
Видео по теме
Использованная литература
- В.В. Афанасьев «Трансформаторы тока» 1989
- И С. Таев «Основы теории электрических аппаратов» 1987
- Вавин В. Н. «Трансформаторы тока» 1966
- Кацман М. М. «Электрические машины и трансформаторы» 1971