snr отношение сигнал шум

Раскладываем по полочкам параметры АЦП

Привет, Хабр! Многие разработчики систем довольно часто сталкиваются с обработкой аналоговых сигналов. Не все манипуляции с сигналами можно осуществить в аналоговой форме, поэтому требуется переводить аналог в цифровой мир для дальнейшей постобработки. Возникает вопрос: на какие параметры стоит обратить внимание при выборе микроконтроллера или дискретного АЦП? Что все эти параметры означают? В этой статье постараемся детально рассмотреть основные характеристики АЦП и разобраться на что стоит обратить внимание при выборе преобразователя.

image loader

Введение

image loader

Рис. 1: Идеальная характеристика АЦП

Статические параметры

image loader

Рис. 4: Дифференциальная нелинейность

image loader

Рис. 5: Интегральная нелинейность

Динамические параметры

image loader

d51de250187a4615de892ca06307691b

Наглядно данное выражение продемонстрированно на рисунке 7.

image loader

Рис. 7: Отношение сигнал/шум

Для оценки SNR АЦП при разработке системы можно воспользоваться следующей формулой:

66dc73fbc486b45472fe5d8f1b8763eb

Первые 2 слагаемых учитывают уровень сигнала и ошибку квантования (нужно понимать, что формула верна для сигнала размаха полной шкалы). Третье слагаемое учитывает эффект передискретизации (выигрыш по обработке или processing gain): если полоса обрабатываемого сигнала (BW Свойство переноса спектра при дискретизации

image loader

Рис 12: дискретизация непрерывного сигнала

По фильтрующему свойству дельта-функции:

1bb5bfca73eea510df13108bcf343364

После дискретизации a292d21ba76d2bd62e465671cc366e6d:

ffd6b29a9e95555df61b0645eb857244

где cc5f7bb7fca9acceb2a704342deaca58

С помощью формулы Релея вычислим спектр:

b8ef5b578d12c42f718965d4eac30a22

29f67b9880bfd5c89a5382b0b846113f

Из этого выражения следует что спектр сигнала будет повторяться во всех зонах Найквиста.

Итак, если есть хороший антиэлайзинговый фильтр, то соблюдая критерий Найквиста, можно оцифровывать сигнал с частотой дискретизации намного ниже полосы АЦП. Но использовать субдискретизацию нужно осторожно. Следует учитывать, что динамические параметры АЦП деградируют (иногда очень сильно) с ростом частоты входного сигнала, поэтому оцифровать сигнал из 6-й зоны так же «чисто», как из 1-й не получится.
Несмотря на это субдискритезация активно используется. Например, для обработки узкополосных сигналов, когда не хочется тратиться на дорогой широкополосный быстродействующий АЦП, который вдобавок имеет высокое потребление. Другой пример – выборка ПЧ (IF-sampling) в РЧ системах. Там благодаря undersampling можно исключить из радиоприемного тракта лишнее аналоговое звено — смеситель (который переносит сигнал на более низкую несущую или на 0).

Сравним архитектуры

На данный момент в мире существует множество различных архитектур АЦП. У каждой из них есть свои преимущества и недостатки. Не существует архитектуры, которая бы достигала максимальных значений всех, описанных выше параметров. Проанализируем какие максимальные параметры скорости и разрешения смогли достичь компании, выпускающие АЦП. Также оценим достоинства и недостатки каждой архитектуры (более подробно о различных архитектурах можно прочитать в статье на хабр).

Тип архитектуры Преимущества Недостатки Максимальное разрешение Максимальная частота дискретизации
flash Быстрый преобразователь. Преобразование осуществляется в один такт. Высокое энергопотребление. Ограниченное разрешение. Требует большой площади кристалла ( b3bc84b52f7bceaf7b5511d1eca1300eкомпараторов). Трудно согласовать большое количество элементов (как следствие низкий выход годных). 14 бит 128 КВыб/с AD679 3 бит 26 ГВыб/с HMCAD5831
folding-interpolated Быстрый преобразователь.
Преобразование осуществляется в один такт. Требует меньшее число компараторов благодаря предварительной «свёртке» всего диапазона обработки в некоторый более узкий диапазон. Занимает меньше площади.
Ошибки, связанные с нелинейностью блока свёртки.
Задержка на установление уровней в блоке свёртки, которая уменьшает максимальную fs.
Среднее разрешение.
12 бит 6.4 ГВыб/с ADC12DL3200 12 бит 6.4 ГВыб/с ADC12DL3200
SAR Высокая точность.
Низкое энергопотребление. Легка в использовании.
Ограниченная скорость. 32 бит 1 МВыб/с LTC2500 10 бит 40 МВыб/с XRD64L43
pipeline Быстрый преобразователь. Самая высокая точность среди быстрых АЦП.
Не занимает большую площадь. Имеет меньшее потребления, среди аналогичных быстрых преобразователей.
Конвейерная задержка. 24 бит 192 КВыб/с AK5386 12 бит 10.25 ГВыб/с AD9213
dual-slope Средняя точность преобразования.
Простота конструкции.
Низкое потребление.
Устойчивость к изменениям факторов внешней среды.
Обрабатывает низкочастотные
Сигналы (низкая fs). Посредственное разрешение.
12+знаковый бит 10 Выб/с TC7109 5+знак бит 200 КВыб/с HI3-7159
∑-Δ Самая высокая точность пре-
Образования благодаря эффекту «Noise shaping» (специфическая фильтрация шума квантования) и передискретизации.
Не может работать с широкополосным сигналом. 32 бита 769 КВыб/с AK5554 12 бит 200МВыб/с ADRV9009

Информацию для таблицы брал на сайте arrow, поэтому если что-то упустил поправляйте в комментариях.

Источник

Отношение сигнал / шум или SNR в аудио: для чего это нужно?

Что такое отношение сигнал / шум или SNR?

Отношение сигнал / шум, S / R или SNR (отношение сигнал / шум) определяется как отношение между выходной мощностью передаваемого сигнала и мощностью шума, который его искажает (поэтому мы говорим только об устройствах, которые излучают звук и никогда устройств, которые его улавливают). Этот запас измеряется, как и почти все, что связано со звуком, в децибелах.

Часто многие производители используют термин динамический диапазон как синоним SNR, но вы должны быть осторожны, потому что некоторые используют его как маркетинговую стратегию, чтобы создать впечатление, что это SNR, когда на самом деле динамический диапазон служит для обозначения расстояния между уровнем выходного пика и фоновым шумом. То, что отношение сигнал / шум, указанное в децибелах, фигурирует в технических характеристиках устройства, следовательно, это ничего не означает, если оно не сопровождается используемыми контрольными точками, а также весами.

Очевидно, что если вы хотите купить оборудование с точки зрения его частотной характеристики, они должны измерить отношение сигнал / шум, используя ту же кривую взвешивания и эталонный уровень, что, к счастью, является наиболее распространенным в отрасли, поэтому уровни SNR равны обычно сравнительный.

Фактор шума

amplificador audio e1614166452968

Эта величина шума может быть выражена так называемым коэффициентом шума (F), который является результатом деления отношения сигнал / шум на входе (S / R) на отношение сигнал / шум на выходе. (S / R) соль, когда значения сигнала и шума выражаются в простых значениях. Таким образом, формула будет выражена следующим образом:

svg

Однако, к большому сожалению, значения отношения сигнал / шум выражаются в децибелах, и поэтому мы говорим о логарифмической формуле. Поскольку коэффициент шума также должен быть выражен в децибелах как величина звука, то формула будет следующей:

svg

Что лучше: более высокое или низкое SNR?

Итак, какое значение SNR мы можем считать хорошим? Это зависит от категории продукта, но когда мы говорим о звуковой карте, встроенной, например, в обычную материнскую плату ПК, SNR 90 дБ уже вполне приличный. Конечно, в специализированных решениях нам придется искать более высокие значения, если возможно, они превышают 100 дБ.

Auriculares gaming SteelSeries 03

Некоторые производители также упоминают коэффициент шума в технических характеристиках своего оборудования, и в этом отношении вам следует обратить внимание на прямо противоположное: чем меньше, тем лучше. К сожалению, большинство производителей бытовой электроники не выражают это значение, которое, как мы объясняли ранее, очень важно, и его часто можно увидеть только в продуктах, разработанных для профессионального звука.

Точнее, это параметр, который, хотя большинство производителей знают, что они его не публикуют, «скрывая свой позор», так сказать, если их продукт не хорош. По этой причине это нормально, что только производители профессиональных аудиопродуктов публикуют это значение, поскольку, если их продукт действительно хороший и качественный, им нечего скрывать. В любом случае, не беспокойтесь, потому что ни один из аудиопродуктов, которые вы наблюдаете, не указывает этот фактор, поскольку для обычного пользователя он также не будет иметь значения.

Источник

Отношение сигнал/шум, ОСШ

– заметки или учебник раскрывающие суть отношения сигнал/шум, ОСШ, измерения отношения сигнал/шум, и формулы отношения сигнал/шум.

Шумовые характеристики а, следовательно, и отношение сигнал/шум – это ключевые параметры для любого радиоприемника. Отношение сигнал/шум, или ОСШ, как его часто называют – это характеристика чувствительности приемника. Это имеет первостепенную важность для всех приложений, от простых радиопередающих устройств, до тех, которые используются в сотовой или беспроводной связи, а также в фиксированной или подвижной радиотелефонной связи, двусторонней радиосвязи, систем спутниковой связи и многих других.

Существует ряд способов, при которых шумовая характеристика, и, следовательно, чувствительность радиоприемника могут быть измерены. Наиболее очевидным методом является сравнение сигнала и шума для известного уровня сигнала, т. е. отношение сигнал/шум (С/Ш) или ОСШ. Очевидно, что чем больше разница между сигналом и нежелательным шумом, т. е. чем больше соотношение С/Ш или ОСШ, тем лучше чувствительность радиоприемного устройства.

Как и в случае измерения любой чувствительности, производительность радиоприемника в целом определяется производительностью последнего каскада УРЧ. Любые шумы, которые поступили на вход первого каскада УРЧ, будут суммироваться с сигналом и усиливаться в последующих усилительных каскадах приемника. В случае, когда шумы, поступившие в первые каскады УРЧ, будут в наибольшей степени усиливаться, этот УРЧ станет наиболее критичным, с точки зрения чувствительности приемника, по производительности. Таким образом, первый усилитель любого радиоприемника должен быть малошумящим.

Концепция отношение сигнал/шум ОСШ.

Хотя существует множество способов измерения чувствительности радиоприемника, отношение C/Ш или ОСШ является одним из самых простых и применяется во множестве приложений. Однако оно имеет ряд ограничений и, несмотря на то, что оно широко используется, другие методы, в том числе коэффициент шума, также часто используются. Тем не менее, отношение С/Ш или ОСШ является важным показателем и широко используемой мерой чувствительности приемника.

Book5.1

Отношение сигнал/шум для радиоприемника

Разница обычно определяется как отношение сигнала к шуму (С/Ш) и, как правило, выражается в децибелах. Так как уровень входного сигнала, очевидно, имеет влияние на это отношение, уровень входного сигнала должен быть известен. Он обычно выражается в микровольт. Как правило, определенный уровень входного сигнала, необходимый, чтобы величина отношения сигнал/шум составляла 10 дБ, задан.

Формула отношения сигнал/шум

Отношение сигнал/шум – это отношение между полезным сигналом и нежелательным мешающим шумом.

Book5.2

Более привычно видеть отношение сигнал/шум, выраженное в логарифмических единицах с использованием децибел:

Book5.3

Если все составляющие выразить в децибелах, то формула может быть упрощена до:

Book5.4

Значение мощности может быть выражено в таких уровнях, как дБм (децибел относительно милливатта или каких-то других величин, уровни которых можно сравнить).

Влияние ширины полосы пропускания на ОСШ

Ряд других факторов, помимо основных показателей, могут повлиять на отношение сигнал/шум, ОСШ. Первый фактор – это реальная пропускная способность приемника. Поскольку шум распространяется во всем диапазоне частот, то обнаружили, что чем шире полоса пропускания приемника, тем выше уровень шума. Соответственно полоса пропускания приемника должна быть определена.

Кроме того, установлено, что использование амплитудной модуляции влияет на уровень модуляции. Чем выше уровень модуляции, тем выше аудиосигнал на выходе приемника. При измерении уровня шума измеряется и выходной аудиосигнал приемника и, соответственно, уровень модуляции AM на него влияет. Обычно коэффициент модуляции, соответствующий 30 %, выбран для этого измерения.

Спецификация отношения сигнал/шум

Данный метод измерения эффективности, наиболее часто используется для ВЧ приемников. Как правило, можно ожидать фигуру отношение С/Ш в районе 0,5 мкВ на 10 дБ полосой частот в 3 кГц с ОБП или Морзе. Для АМ можно ожидать отношение С/Ш в 1,5 мкВ на 10 дБ и полосой частот в 6 кГц при уровне модуляции (АМ) 30 %.

На что следует обратить внимание при измерении отношения сигнал/шум

ОСШ – это очень удобный способ количественной оценки чувствительности приемника, но существуют некоторые моменты, которые следует учитывать при интерпретации и измерения отношения сигнал/шум. При исследовании этого необходимо обратить внимание на способ измерения отношения сигнал/шум, ОСШ. Откалиброванный генератор ВЧ сигналов используется в качестве источника сигнала для приемника. Он должен иметь точный метод настройки выходного уровня до очень низких уровней сигнала. Затем на выходе приемника универсальным вольтметром переменного тока, измеряется уровень выходного сигнала.

С/Ш и (С+Ш)/Ш. При измерении отношения сигнал/шум имеются две основные величины измерения. Одна – это уровень шума, а другая – уровень сигнала. Как результат способа, с помощью которого сделаны измерения, часто измерение полезного сигнала также включает в себя шум, т. е. это измерение сигнал + шум. Это, как правило, не является слишком большой проблемой, так как уровень сигнала, как и предполагалось, будет намного выше, чем уровень шума. В связи с этим некоторые производители приемников будут указывать несколько иное отношение: а именно сигнала и шума к шуму (С+Ш)/Ш. На практике разница не большая, но отношение (С+Ш)/Ш является более корректным.

РП и ЭДС. Иногда в спецификации генератора сигналов упоминается, что это либо генератор разности напряжений, либо генератор ЭДС. На самом деле это очень важно, потому что существует коэффициент, равный 2 : 1 между двумя уровнями. Например, 1 мкВ ЭДС и 0,5 мкВ РП одинаковы. ЭДС (электродвижущая сила) – это напряжение холостого хода генератора, в то время как РП (разность потенциалов) измеряется при нагруженности генератора. Результат способа работы схемы генератора предполагает, что приложена действительная нагрузка (50 Ом). Если нагрузка не равна этому значению, то возникнет ошибка. Несмотря на это, большая часть оборудования будет принимать значения в PП, если не указано иное.

Хотя существует много параметров, которые используются для указания характеристики чувствительности радиоприемников, отношение сигнал/шум является одним из основных и легко понимаемых. Поэтому широко используется для различных радиоприемников, используемых в приложениях, начиная от радиоприема до фиксированной или подвижной радиосвязи.

Источник

СОДЕРЖАНИЕ

Определение

Отношение сигнал-шум определяется как отношение мощности в виде сигнала (значимый вход) к мощности фонового шума (бессмысленным или нежелательного входного сигнала):

Децибелы

Аналогичным образом SNR может быть выражено в децибелах как

Используя определение SNR

Использование правила частного для логарифмов

Подстановка определений ОСШ, сигнала и шума в децибелах в приведенное выше уравнение приводит к важной формуле для расчета отношения сигнал / шум в децибелах, когда сигнал и шум также выражаются в децибелах:

В приведенной выше формуле P измеряется в единицах мощности, таких как ватты (Вт) или милливатты (мВт), а отношение сигнал / шум представляет собой чистое число.

Однако, когда сигнал и шум измеряются в вольтах (В) или амперах (А), которые являются мерой амплитуды, их необходимо сначала возвести в квадрат, чтобы получить величину, пропорциональную мощности, как показано ниже:

Динамический диапазон

SNR обычно используется для обозначения среднего отношения сигнал / шум, поскольку возможно, что мгновенные отношения сигнал / шум будут значительно отличаться. Эту концепцию можно понять как нормализацию уровня шума до 1 (0 дБ) и измерение того, насколько «выделяется» сигнал.

Отличие от обычной мощности

В физике средняя мощность сигнала переменного тока определяется как среднее значение напряжения, умноженного на ток; для резистивных (не реакционноспособный ) цепей, где напряжение и ток находятся в фазе, это эквивалентно произведению среднеквадратичного напряжения и тока:

Альтернативное определение

Иногда SNR определяется как квадрат альтернативного определения, приведенного выше, и в этом случае оно эквивалентно более общему определению :

Измерения системы модуляции

Амплитудная модуляция

Отношение сигнал / шум в канале определяется выражением

Отношение выходной сигнал / шум (AM-приемника) определяется выражением

Модуляция частоты

Отношение сигнал / шум в канале определяется выражением

Отношение выходной сигнал / шум определяется выражением

Подавление шума

220px Analyse thermo gravimetrique bruit

Когда характеристики шума известны и отличаются от сигнала, можно использовать фильтр для уменьшения шума. Например, синхронный усилитель может выделить сигнал с узкой полосой пропускания из широкополосного шума в миллион раз сильнее.

Когда сигнал постоянный или периодический, а шум случайный, можно улучшить отношение сигнал / шум путем усреднения измерений. В этом случае шум уменьшается как квадратный корень из числа усредненных отсчетов.

Цифровые сигналы

Коэффициент ошибок модуляции (MER) является мерой отношения сигнал / шум в сигнале с цифровой модуляцией.

Фиксированная точка

Для n- битных целых чисел с равным расстоянием между уровнями квантования ( равномерное квантование ) также определяется динамический диапазон (DR).

Предполагая равномерное распределение значений входного сигнала, шум квантования представляет собой равномерно распределенный случайный сигнал с размахом амплитуды одного уровня квантования, что составляет отношение амплитуд 2 n / 1. Тогда формула:

D р d B знак равно S N р d B знак равно 20 бревно 10 ⁡ ( 2 п ) ≈ 6.02 ⋅ п <\ Displaystyle \ mathrm > = \ mathrm > = 20 \ log _ <10>(2 ^ ) \ приблизительно 6,02 \ cdot n> svg

Эта взаимосвязь является источником таких утверждений, как « 16-битный звук имеет динамический диапазон 96 дБ». Каждый дополнительный бит квантования увеличивает динамический диапазон примерно на 6 дБ.

Предполагая полномасштабный синусоидальный сигнал (то есть квантователь спроектирован так, что он имеет те же минимальное и максимальное значения, что и входной сигнал), шум квантования приближается к пилообразной волне с размахом амплитуды одного уровня квантования. и равномерное распределение. В этом случае отношение сигнал / шум составляет примерно

S N р d B ≈ 20 бревно 10 ⁡ ( 2 п 3 / 2 ) ≈ 6.02 ⋅ п + 1,761 <\ displaystyle \ mathrm > \ около 20 \ log _ <10>(2 ^ <\ sqrt <3/2>>) \ около 6,02 \ cdot n + 1,761> svg

Плавающая запятая

Числа с плавающей запятой позволяют найти компромисс между отношением сигнал / шум для увеличения динамического диапазона. Для n-битных чисел с плавающей запятой, с nm битами в мантиссе и m битами в экспоненте :

Обратите внимание, что динамический диапазон намного больше, чем с фиксированной точкой, но за счет худшего отношения сигнал / шум. Это делает плавающую точку предпочтительной в ситуациях, когда динамический диапазон велик или непредсказуем. Более простые реализации с фиксированной точкой могут использоваться без ухудшения качества сигнала в системах с динамическим диапазоном менее 6,02 м. Очень большой динамический диапазон чисел с плавающей запятой может быть недостатком, поскольку требует более предусмотрительности при разработке алгоритмов.

Оптические сигналы

Виды и сокращения

Другое использование

Источник

Отношение сигнал шум и разница между SNR и EbNo

Отношение сигнал шум бывает разный, по мощности SNR (signal to noise ratio) который мы рассмотрели вот в этой статье “Отношение сигнал/шум Гаусс” это отношение средней мощности сигнала к средней мощности шума.

lazy placeholder

В цифровых система связи в основном применяют другое отношение сигнал/шум – отношение сигнал/шум на бит Eb/No, где Eb это отношение энергии бита к спектральной плотности мощности шума No. Под энергией бита Eb подразумевается энергия сигнала за длительность бита. SNR=Ps/PN

Между SNR и Eb/No существует связь. По своей сути Eb/No представляет собой SNR, нормированное на ширину полосы W и битовую скорость R. Чтобы преобразовать одно выражение в другое необходимо среднюю мощность сигнала PS выразить через энергию бита Eb и битовую скорость R. Мощность – это энергия, деленная на время. В данном случае PS это энергия бита Eb, деленная на длительность бита Tb.

Если расписать среднюю мощность сигнала. Мощность – это энергия, деленная на время. В качестве энергии возьмем энергию бита Eb, деленная на длительность бита Tb. Мощность – это энергия, деленная на время. В данном случае Ps это энергия бита Eb, деленная на длительность бита Tb. Ps=Eb/Tb

Длительность бита Tb и битовая скорость R взаимно обратны, и Tb можно заменить на 1/R. Тогда это выражение можно переписать в следующем виде: Ps=Eb/R

Распишем среднюю мощность шума PN. Средняя мощность белого гауссовского шума бесконечна! А чтобы она стала конечной необходимо ограничить полосу шума. Поэтому под средней мощностью шума PN в данном случае подразумевается та мощность шума, которая попадает в полосу фильтра приемника (фильтра основной селекции).

lazy placeholder

Отношение сигнал/шум по мощности SNR можно переписать в следующем виде: SNR=Eb·R/N0·W

И битовая скорость R, и полоса пропускания фильтра W имеют размерность Гц. Таким образом, отношение сигнал/шум на бит Eb/No – это SNR, нормированное по битовой скорости R и полосе пропускания фильтра W.

Сравнение SNR и Eb/No

На рисунке ниже представлена зависимость вероятности битовой ошибки от отношения сигнал/шум: на левом графике от SNR, на правом от Eb/No.

lazy placeholder

Для начала рассмотрим левый график. На графиках представлены зависимости для трех разных битовых скоростей. Средняя мощность сигнала во всех случаях одинаковая.

Пусть начальная битовая скорость равна R бит/с (красная кривая). Если битовую скорость увеличить в 2 раза (2R бит/с), то кривая сместится правее (синяя кривая). Это объясняется тем, что энергия бита Eb уменьшается в 2 раза, так как равенство Ps=Eb·R сохраняется, следовательно, если битовая скорость увеличивается 2 раза, то энергия бита уменьшается в 2 раза. А энергия бита в свою очередь напрямую определяет вероятность битовой ошибки.

Если битовую скорость R уменьшить в 2 раза, не изменяя среднюю мощность сигнала, то энергия бита Eb увеличиться в 2 раза (желтая кривая). Это приводит к смещению кривой влево, и следовательно, увеличению помехоустойчивости. Чем ниже скорость передачи данных, тем лучше помехоустойчивость.

Рассмотри теперь правый график. На графике представлены все три случая: три разных битовых скорости, но мы видим только одну кривую. Дело в том, что при переходе от SNR к Eb/No мы отвязались от битовой скорости. По этой причине, вне зависимости от битовой скорости, зависимость вероятности битовой ошибки от Eb/No будет представляться одной кривой. Данная кривая определяется только модуляцией и приемником ( оптимальный приемник или нет; когерентный прием или нет и т.д.).

Отношение сигнал/шум для цифровых систем

Отношение Eb/No можно рассматривать как величину, позволяющую сравнивать различные модуляции, помехоустойчивое кодирование, приемники и т.д. в отрыве от конкретных скоростей передачи.

Вывод выражения для Eb/No был сделан исходя из того, что приемный фильтр является прямоугольным с полосой W. Данное условие не выполняется никогда, т.к. фильтр с прямоугольной АЧХ физически нереализуем. Для того чтобы обойти данную проблему, необходимо использовать эквивалентную шумовую полосу.

Эквивалентная шумовая полоса – это полоса идеализированного прямоугольного фильтра, в который попадает такая же мощность шума, как и в реальный фильтр с непрямоугольной характеристикой.

Для того чтобы получить значение W для реального фильтра необходимо вычислить площадь под кривой АЧХ, а затем взять (мысленно) фильтр с прямоугольной АЧХ, коэффициент передачи в полосе пропускная которого равен 1, а площадь под кривой, такая же, как и в реальном фильтре. В этом случая в фильтр с прямоугольной АЧХ будет попадать такая же мощность шума. Ширина такого эквивалентного фильтра с прямоугольной АЧХ и есть эквивалентная шумовая полоса W.

lazy placeholder

Мощность шума, попавшего в реальный фильтр, равна мощности шума эквивалентного прямоугольного фильтра. N = Nэкв.

Переходи в раздел Радиосвязь и читай полезные статьи.

Источник

Понравилась статья? Поделить с друзьями:
Добавить комментарий
  • Как сделать успешный бизнес на ритуальных услугах
  • Выездной кейтеринг в России
  • Риски бизнеса: без чего не обойтись на пути к успеху
  • snow приложение на русском
  • snow приложение на компьютер